Skip to main content Accessibility help
×
Home

Applications in Stimulated Emission Depletion Microscopy: Localization of a Protein Toxin in the Endoplasmic Reticulum Following Retrograde Transport

  • Cristina Herrera (a1) (a2), Nicholas J. Mantis (a1) (a2) and Richard Cole (a2) (a3)

Abstract

Retrograde transport is a process in which proteins are trafficked from the plasma membrane and endosomes to biosynthetic and secretory organelles, namely the Golgi apparatus and endoplasmic reticulum (ER). A number of plant and bacterial toxins, including cholera toxin and ricin toxin, exploit retrograde transport to gain entry into host cells, although the specifics of this process have remained difficult to probe by laser scanning confocal microscopy (LSCM). Here we demonstrate the use of super-resolution and live-cell imaging [stimulated emission depletion (STED)] to visualize exogenously applied ricin toxin within the ER. The improved resolution obtained by STED, as compared with LSCM (0.09 versus 0.19 μm), provides a more accurate determination of the amount of ricin that had trafficked to the ER.

Copyright

Corresponding author

* Corresponding author. richard.cole@health.ny.gov

References

Hide All
Karrer, H.E. (1956). The ultrastructure of mouse lung; a note on the fine structure of mitochondria and endoplasmic reticulum of the bronchiolar epithelium. J Biophys Biochem Cytol 2(Suppl 4), 115118.
Lalkens, B., Testa, I., Willig, K.I. & Hell, S.W. (2012). MRT letter: Nanoscopy of protein colocalization in living cells by STED and GSDIM. Microsc Res Tech 75(1), 16.
Mantis, N.J. (2014). Ricin toxin. In Manual of Security Sensitive Microbes and Toxins, Liu, D. (Ed.), pp. 1024. Boca Raton, FL: CRC Press.
Neumann, D., Buckers, J., Kastrup, L., Hell, S.W. & Jakobs, S. (2010). Two-color STED microscopy reveals different degrees of colocalization between hexokinase-I and the three human VDAC isoforms. PMC Biophys 3(1), 4.
Osseforth, C., Moffitt, J.R., Schermelleh, L. & Michaelis, J. (2014). Simultaneous dual-color 3D STED microscopy. Opt Express 22(6), 70287039.
Rapak, A., Falnes, P.O. & Olsnes, S. (1997). Retrograde transport of mutant ricin to the endoplasmic reticulum with subsequent translocation to cytosol. Proc Natl Acad Sci USA 94(8), 37833788.
Saenz, J.B., Doggett, T.A. & Haslam, D.B. (2007). Identification and characterization of small molecules that inhibit intracellular toxin transport. Infect Immun 75(9), 45524561.
Sandvig, K., Olsnes, S. & Pihl, A. (1976). Kinetics of binding of the toxic lectins abrin and ricin to surface receptors of human cells. J Biol Chem 251(13), 39773984.
Sandvig, K., Skotland, T., van Deurs, B. & Klokk, T.I. (2013). Retrograde transport of protein toxins through the Golgi apparatus. Histochem Cell Biol 140(3), 317326.
Schneider, G., Guttmann, P., Heim, S., Rehbein, S., Mueller, F., Nagashima, K., Heymann, J.B., Muller, W.G. & McNally, J.G. (2010). Three-dimensional cellular ultrastructure resolved by X-ray microscopy. Nat Methods 7(12), 985987.
Slominska-Wojewodzka, M., Gregers, T.F., Walchli, S. & Sandvig, K. (2006). EDEM is involved in retrotranslocation of ricin from the endoplasmic reticulum to the cytosol. Mol Biol Cell 17(4), 16641675.
Slominska-Wojewodzka, M., Pawlik, A., Sokolowska, I., Antoniewicz, J., Wegrzyn, G. & Sandvig, K. (2014). The role of EDEM2 compared with EDEM1 in ricin transport from the endoplasmic reticulum to the cytosol. Biochem J 457(3), 485496.
Sokolowska, I., Walchli, S., Wegrzyn, G., Sandvig, K. & Slominska-Wojewodzka, M. (2011). A single point mutation in ricin A-chain increases toxin degradation and inhibits EDEM1-dependent ER retrotranslocation. Biochem J 436(2), 371385.
Song, K., Mize, R.R., Marrero, L., Corti, M., Kirk, J.M. & Pincus, S.H. (2013). Antibody to ricin a chain hinders intracellular routing of toxin and protects cells even after toxin has been internalized. PLoS One 8(4), e62417.
Spooner, R.A., Watson, P.D., Marsden, C.J., Smith, D.C., Moore, K.A., Cook, J.P., Lord, J.M. & Roberts, L.M. (2004). Protein disulphide-isomerase reduces ricin to its A and B chains in the endoplasmic reticulum. Biochem J 383(Pt 2), 285293.
Stechmann, B., Bai, S.K., Gobbo, E., Lopez, R., Merer, G., Pinchard, S., Panigai, L., Tenza, D., Raposo, G., Beaumelle, B., Sauvaire, D., Gillet, D., Johannes, L. & Barbier, J. (2010). Inhibition of retrograde transport protects mice from lethal ricin challenge. Cell 141(2), 231242.
van Deurs, B., Sandvig, K., Petersen, O.W., Olsnes, S., Simons, K. & Griffiths, G. (1988). Estimation of the amount of internalized ricin that reaches the trans-Golgi network. J Cell Biol 106(2), 253267.
Westphal, V., Rizzoli, S.O., Lauterbach, M.A., Kamin, D., Jahn, R. & Hell, S.W. (2008). Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320(5873), 246249.
Wildanger, D., Rittweger, E., Kastrup, L. & Hell, S.W. (2008). STED microscopy with a supercontinuum laser source. Opt Express 16(13), 96149621.
Yermakova, A., Klokk, T.I., Cole, R., Sandvig, K. & Mantis, N.J. (2014). Antibody-mediated inhibition of ricin toxin retrograde transport. mBio 5(2), e00995.
Yermakova, A., Klokk, T.I., O’Hara, J.M., Cole, R., Sandvig, K. & Mantis, N.J. (2016). Neutralizing monoclonal antibodies against disparate epitopes on ricin toxin’s enzymatic subunit interfere with intracellular toxin transport. Sci Rep 6, 22721.

Keywords

Related content

Powered by UNSILO
Type Description Title
WORD
Supplementary materials

Herrera supplementary material
Supplemental Table 1

 Word (13 KB)
13 KB

Applications in Stimulated Emission Depletion Microscopy: Localization of a Protein Toxin in the Endoplasmic Reticulum Following Retrograde Transport

  • Cristina Herrera (a1) (a2), Nicholas J. Mantis (a1) (a2) and Richard Cole (a2) (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.