Skip to main content Accessibility help

Angular Dependence of the Ion-Induced Secondary Electron Emission for He+ and Ga+ Beams

  • Vincenzo Castaldo (a1), Josephus Withagen (a1), Cornelius Hagen (a1), Pieter Kruit (a1) and Emile van Veldhoven (a2)...


In recent years, novel ion sources have been designed and developed that have enabled focused ion beam machines to go beyond their use as nano-fabrication tools. Secondary electrons are usually taken to form images, for their yield is high and strongly dependent on the surface characteristics, in terms of chemical composition and topography. In particular, the secondary electron yield varies characteristically with the angle formed by the beam and the direction normal to the sample surface in the point of impact. Knowledge of this dependence, for different ion/atom pairs, is thus the first step toward a complete understanding of the contrast mechanism in scanning ion microscopy. In this article, experimentally obtained ion-induced secondary electron yields as a function of the incidence angle of the beam on flat surfaces of Al and Cr are reported, for usual conditions in Ga+ and He+ microscopes. The curves have been compared with models and simulations, showing a good agreement for most of the angle range; deviations from the expected behavior are addressed and explanations are suggested. It appears that the maximum value of the ion-induced secondary electron yield is very similar in all the studied cases; the yield range, however, is consistently larger for helium than for gallium, which partially explains the enhanced topographical contrast of helium microscopes over the gallium focused ion beams.


Corresponding author

Corresponding author. E-mail:


Hide All
Bell, D. (2009). Contrast mechanisms and image formation in helium ion microscopy. Microsc Microanal 15, 147153.
Castaldo, V., Hagen, C.W., Kruit, P., van Veldhoven, E. & Maas, D. (2009). On the influence of the sputtering in determining the resolution of a scanning ion microscope. J Vac Sci Technol B 27(6), 31963202.
Castaldo, V., Hagen, C.W., Rieger, B. & Kruit, P. (2008). Sputtering limits versus signal-to-noise limits in the observation of Sn-balls in a Ga+ microscope. J Vac Sci Technol B 26(6), 21072115.
Ferron, J., Alonso, E., Baragiola, R. & Oliva-Florio, A. (1981). Dependence of ion-electron emission from clean metals on the incidence angle of the projectile. Phys Rev B 24(8), 44124419.
Giannuzzi, L.A., Utlaut, M. & Scheinfein, M. (2008). Relative contrast in ion and electron induced secondary electron images. Microsc Microanal 14(S2), 11881189 (CD-ROM).
Griffin, B.J. & Joy, D. (2008). Variation of Rutherford backscattered ion and ion-induced secondary electron yield with atomic number in the “Orion” scanning helium ion microscope. Microsc Microanal 14(S2), 11901191 (CD-ROM).
Hagstrum, H.D. (1954a). Auger ejection of electrons from tungsten by noble gas ions. Phys Rev 96(2), 325335.
Hagstrum, H.D. (1954b). Theory of Auger ejection of electrons from metals by ions. Phys Rev 96(2), 336365.
Hill, R., Notte, J. & Ward, B. (2008). The ALIS He ion source and its application to high resolution microscopy. Physics Procedia 1, 135141.
Ishitani, T. & Ohya, K. (2003). Comparison in spatial spreads of secondary electron information between scanning ion and scanning electron microscopy. Scanning 25(4), 201209.
Kempshall, B.W., Schwarz, S.M., Prenitzer, B.I., Giannuzzi, L.A., Irwin, R.B. & Stevie, F.A. (2001). Ion channeling effects on the focused ion beam milling of Cu. J Vac Sci Technol B 19(3), 749754.
Ogawa, S., Thompson, W., Stern, L., Scipioni, L., Notte, J., Farkas, L. & Barriss, L. (2010). Helium ion secondary electron mode microscopy for interconnect material imaging. Jpn J Appl Phys 49(4), 04DB12.
Ohya, K. & Ishitani, T. (2003). Comparative study of depth and lateral distributions of electron excitation between scanning ion and scanning electron microscopes. J Electron Microsc 52(3), 291298.
Ohya, K. & Kawata, J. (1994). Monte Carlo study of incident-angle dependence of ion-induced kinetic electron emission from solids. Nucl Instrum Meth B 90(1-4), 552555.
Orloff, J. (1993). High-resolution focused ion beams. Rev Sci Instrum 64(5), 11051130.
Orloff, J., Swanson, L.W. & Utlaut, M. (1996). Fundamental limits to imaging resolution for focused ion beams. J Vac Sci Technol B 14(6), 37593763.
Orloff, J., Utlaut, M. & Swanson, L.W. (2003). High Resolution Focused Ion Beams. Boston, MA: Kluwer Academic/Plenum Publishers.
Ramachandra, R., Griffin, B. & Joy, D. (2009). A model of secondary electron imaging in the helium ion scanning microscope. Ultramicroscopy 109(6), 748757.
Seiler, H. (1983). Secondary electron emission in the scanning electron microscope. J Appl Phys 54(11), R1R18.
Seliger, R.L., Ward, J.W., Wang, V. & Kubena, R.L. (1979). A high-intensity scanning ion probe with submicrometer spot size. Appl Phys Lett 34(5), 310312.
Sternglass, E. (1957). Theory of secondary electron emission by high-speed ions. Phys Rev 108(1), 112.
Svensson, B., Holmen, G. & Buren, A.A. (1981). Angular dependence of the ion-induced secondary-electron yield from solids. Phys Rev B 24(7), 37493755.
Tondare, V.N. (2005). Quest for high brightness, monochromatic noble gas ion sources. J Vac Sci Technol A 23(6), 14981508.
Ward, B., Notte, J.A. & Economou, N.P. (2006). Helium ion microscope: A new tool for nanoscale microscopy and metrology. J Vac Sci Technol B 24(6), 28712874.
Yamamura, Y., Mossner, C. & Oechsner, H. (1987). The bombarding-angle dependence of sputtering yields under various surface conditions. Radiat Effects 103, 2543.
Ziegler, J.F., Biersack, J.P. & Littmark, U. (1985). The Stopping and Range of Ions in Solids. New York: Pergamon Press (1996 revised Ed.). Information for SRIM and TRIM available (the TRIM code is available for free download).


Angular Dependence of the Ion-Induced Secondary Electron Emission for He+ and Ga+ Beams

  • Vincenzo Castaldo (a1), Josephus Withagen (a1), Cornelius Hagen (a1), Pieter Kruit (a1) and Emile van Veldhoven (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed