Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-19T22:53:28.629Z Has data issue: false hasContentIssue false

Analytical and Microbiological Characterization of Paper Samples Exhibiting Foxing Stains

Published online by Cambridge University Press:  19 March 2015

Margarida Nunes
Affiliation:
Departamento de Química, Escola de Ciência e Tecnologia, Centro de Química de Évora & Laboratório HERCULES, Universidade de Évora, Largo Marquês de Marialva, 8, 7000-809 Évora, Portugal
Cátia Relvas
Affiliation:
Departamento de Química, Escola de Ciência e Tecnologia, Centro de Química de Évora & Laboratório HERCULES, Universidade de Évora, Largo Marquês de Marialva, 8, 7000-809 Évora, Portugal
Francisca Figueira
Affiliation:
Laboratório José de Figueiredo, Direção Geral do Património Cultural, Rua das Janelas Verdes, 1249-018 Lisboa, Portugal
Joana Campelo
Affiliation:
Laboratório José de Figueiredo, Direção Geral do Património Cultural, Rua das Janelas Verdes, 1249-018 Lisboa, Portugal
António Candeias
Affiliation:
Departamento de Química, Escola de Ciência e Tecnologia, Centro de Química de Évora & Laboratório HERCULES, Universidade de Évora, Largo Marquês de Marialva, 8, 7000-809 Évora, Portugal Laboratório José de Figueiredo, Direção Geral do Património Cultural, Rua das Janelas Verdes, 1249-018 Lisboa, Portugal
Ana T. Caldeira
Affiliation:
Departamento de Química, Escola de Ciência e Tecnologia, Centro de Química de Évora & Laboratório HERCULES, Universidade de Évora, Largo Marquês de Marialva, 8, 7000-809 Évora, Portugal
Teresa Ferreira*
Affiliation:
Departamento de Química, Escola de Ciência e Tecnologia, Centro de Química de Évora & Laboratório HERCULES, Universidade de Évora, Largo Marquês de Marialva, 8, 7000-809 Évora, Portugal
*
*Corresponding author. tasf@uevora.pt
Get access

Abstract

This work comprises the use of a multi-analytical approach combined with microbiological studies to characterize six paper samples, containing foxing stains, from the 20th century, regarding their cellulose matrix, fillers, and sizing materials, and to evaluate possible paper degradation that might have occurred during the foxing stains. Photography under different illuminations and optical microscopy were used for morphological characterization of the paper samples and foxing stains. Scanning electron microscopy coupled energy dispersive spectroscopy (SEM-EDS) was of particular importance for defining the presence of fiber disorder and disruption on the surface of some of the stains, and localized accumulations of mineral-like particles on the surface of others. SEM-EDS, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FT-IR), and energy dispersive X-ray fluorescence (EDXRF) were used for the identification of mineral fillers, whereas sizing agents were analyzed using ATR-FT-IR. EDXRF results showed that no differences, within the standard deviation, were found in iron and copper contents between the foxed and unfoxed areas. Fungi belonging to the genus Penicillium spp. were found in all the paper samples. Unfoxed areas presented lower contamination than the foxed areas.

Type
SPMicros Special Section
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdel-Maksoud, G. (2011). Analytical techniques used for the evaluation of a 19th century Quranic manuscript conditions. Measurement 44, 16061617.Google Scholar
Area, M.C. & Cheradame, H. (2011). Paper aging and degradation: Recent findings and research methods. Bioresources 6(4), 53075337.Google Scholar
ATR-FTIR Library COMPLETE (2009). Vol. 2© 2009 ST Japan, Inc.Google Scholar
Barrett, T., Robert, S. & Wade, J. ( 2012). XRF analysis of historical paper in open books. In Studies in Archaeological Sciences, Shugar, A.N. & Mass, J.L. (Eds.), pp. 191214. Leuven, Brussels: Leuven University Press.Google Scholar
Beazley, K. (1991). Mineral fillers in paper. Pap Conservator 15, 1727.Google Scholar
Bicchieri, M., Ronconi, S., Romano, F.P., Pappalardo, L., Corsi, M., Cristoferetti, G., Legnaioli, S., Palleschi, V., Salvetti, A. & Tognoni, E. (2002). Study of foxing stains on paper by chemical methods, infrared spectroscopy, micro-X-ray fluorescence spectrometry and laser induced breakdown spectroscopy. Spectrochim Acta B 57, 12331249.CrossRefGoogle Scholar
Böke, H., Akkurt, S., Özdemir, S., Gökturk, E.H. & Saltik, E.N. (2004). Quantification of CaCO3–CaSO3.0.5H2O–CaSO4.2H2O mixtures by FTIR analysis and its ANN model. Mater Lett 58, 723726.Google Scholar
Brandt, N.N., Chikishev, A.Y. Itoh, K. & Rebrikova, N.L. (2009). ATR-FTIR and FT-Raman spectroscopy and laser cleaning of old paper samples with foxing. Laser Phys 19(3), 483492.Google Scholar
Brückle, I. (1993). The role of alum in historical papermaking. Abbey Newslett. 17(4), 5357.Google Scholar
Buzio, R., Calvini, P., Ferroni, A. & Valbusa, U. (2004). Surface analysis of paper documents damaged by foxing. App Phys A 79, 383387.CrossRefGoogle Scholar
Cannon, A. (2011). Interactions between adhesives from natural sources and paper substrates. Proceedings of Symposium 2011—Adhesives and Consolidants for Conservation: Research and Applications, Ottawa, pp. 1–16. Available at http://www.cci-icc.gc.ca/symposium/2011 (retrieved March 3, 2014).Google Scholar
Castro, K., Proetti, N., Princi, E., Pessanha, S., Carvalho, M.L., Vicini, S., Capitani, D. & Madariaga, J.M. (2008). Analysis of a coloured Dutch map from the eighteenth century: The need for a multi-analytical spectroscopic approach using portable instrumentation. Anal Chim Acta 623, 187194.Google Scholar
Choi, S. (2007). Foxing on paper: A literature review. J Am Inst Conserv 46, 137152.Google Scholar
Coluzza, C., Bicchieri, M., Monti, M., Piantanida, G. & Sodo, A. (2008). Atomic force microscopy application for degradation diagnostics in library heritage. Surf Interface Anal 40(9), 12481253.CrossRefGoogle Scholar
Daniels, V. & Meeks, N.D. (1994). Foxing caused by copper alloy inclusions in paper. In Symposium 88: Conservation of Historic and Artistic Works on Paper, H.D. (ed.), pp. 229233. Ottawa, Canada: Canadian Conservation Institute.Google Scholar
Derow, J. & Owen, A. (1992). Foxing. In Paper Conservation Catalog, Bertalam, S. (Ed.), pp. 139. Washington, DC: American Institute for Conservation of Historic and Artistic Works.Google Scholar
Derkacheva, O. & Sukhov, D. (2008). Investigation of lignins by FTIR spectroscopy. Macromol Symph 265, 6168.Google Scholar
Derrick, M.R., Stulik, D. & Landry, J.M. (1999). Infrared Spectroscopy in Conservation Science. Scientific Tools for Conservation. Los Angeles, USA: The Getty Conservation Institute.Google Scholar
Erhardt, D. & Tumosa, C. (2005). Chemical degradation of cellulose in paper over 500 years. Restaurator 26(3), 151158.Google Scholar
Espy, H.H. (1990). The genesis of alkaline sizing and alkaline-curing wet-strength resins. Alkaline Pap Advocate 3(3), 2829. Available at http://www.cool.conservation-us.org (retrieved March 3, 2014).Google Scholar
Eusman, E. (1995). Tideline formation in paper objects: Cellulose degradation at the wet dry boundary. In Conservation Research, Studies in the History of Art, Monograph Series II (vol. 51, pp. 1127). Washington, USA: National Gallery of Art.Google Scholar
Figueira, F., Afonso, M., Rocha, A.C. & Carvalho, M.L. (2009). Levantamento de manchas em desenhos dos séc. XVI-XIX no MNAA. Museologia 3, 1929.Google Scholar
Florian, M.-L. (1996). The role of the conidia of fungi in fox spots. Stud Conserv 41, 6575.Google Scholar
Florian, M.L.-E. & Manning, L. (2000). SEM analysis of irregular fungal fox spots in an 1854 book: Population dynamics and species identification. Int Biodeterior Biodegrad 46, 205220.Google Scholar
Graaff, J.H. (1994). Research into the cause of browning of paper mounted on mats. In Contributions of the Central Research Laboratory to the Field of Conservation and Restoration, Verschoor, H., Mosk, J. (Eds.). pp. 2142. Amsterdam, The Netherlands: The Laboratorium.Google Scholar
Grijn, E., Kardinal, A. & Pork, H. (2002). Research into paper degradation from an historical starting-point: A case-study of discoloration of 19th-century paper. Contributions to Conservation, Mosk, J. & Tennent, N.H. (Eds.), pp. 119126. The Netherlands: Research in Conservation at Netherlands Institute for Cultural Heritage.Google Scholar
Goltz, D., Attas, M., Young, G., Cloutis, E. & Bedynski, M. (2010). Assessing stains on historical documents using hyperspectral imaging. J Cult Herit 11, 1926.Google Scholar
Jeong, M., Dupont, A. & René de la Rie, E. (2014). Degradation of cellulose at the wet–dry interface. II. Study of oxidation reactions and effect of antioxidants. Carbohydr Polym 101, 671683.Google Scholar
Junior, J.L. & Ligterink, F. (2001). Spectroscopic characterization of the fluorescence of paper at the wet-dry interface. Restaurator 22(3), 133145.Google Scholar
Ligterink, F., Pork, H. & Smit, W. (1991). Foxing stains and discoloration of leaf margins and paper surrounding printing ink: Elements of a complex phenomenon in books. Pap Conservator 15, 4552.Google Scholar
Manente, S., Micheluz, A., Ganzerla, R., Ravagnan, G. & Gambaro, A. (2012). Chemical and biological characterization of paper: A case study using a proposed methodological approach. Int Biodeterior Biodegrad 74, 99108.Google Scholar
Manso, M. & Carvalho, M.L. (2009). Application of spectroscopic techniques for the study of paper documents: A survey. Spectrochim Acta B 64, 482490.Google Scholar
Manso, M., Carvalho, M.L., Queralt, I., Vicini, S. & Princi, E. (2011). Investigation of the composition of historical and modern Italian papers by energy dispersive X-ray fluorescence (EDXRF), X-ray diffraction (XRD), and scanning electron microscopy energy dispersive spectrometry (SEM-EDS). Appl Spectrosc 65(1), 5259.Google Scholar
Manso, M., Costa, M. & Carvalho, M.L. (2008). Comparison of elemental content on modern and ancient papers by EDXRF. App Phys A 90, 4348.Google Scholar
Manso, M., Pessanha, S., Figueira, F., Valadas, S., Guilherme, A., Afonso, M., Rocha, A.C., Oliveira, M.J., Ribeiro, I. & Carvalho, M.L. (2009). Characterisation of foxing stains in eighteenth to nineteenth century drawings using non-destructive techniques. Anal Bioanal Chem 395, 20292036.Google Scholar
Mesquita, N., Portugal, A., Videira, S., Rodríguez-Echeverría, S., Bandeira, A.M.L., Santos, M.J.A. & Freitas, H. (2009). Fungal diversity in ancient documents. A case study on the Archive of the University of Coimbra. Int Biodeterior Biodegrad 63, 626629.Google Scholar
Michaelsen, A., Piñar, G., Montenari, M. & Pinzari, F. (2009). Biodeterioration and restoration of a 16th century book using a combination of conventional and molecular techniques: A case study. Int Biodeterior Biodegrad 63, 161168.Google Scholar
Montemartini Corte, A., Ferroni, A. & Salvo, A.S. (2003). Isolation of fungal species from test samples and maps damaged by foxing, and correlation between these species and the environment. Int Biodeterior Biodegrad 51, 167173.Google Scholar
Peters, D. (2000). An alternative to foxing? Oxidation degradation as a cause of cellulosic discolouration. Pap Restaurierung 1, 801806.Google Scholar
Piantanida, G., Bicchieri, M., Pinzari, F. & Coluzza, C. (2005). Atomic force microscopy imaging directly on paper: A study of library materials degradation. Proc SPIE Opt Methods Arts Archaeol 5857, 217227.Google Scholar
Pinzari, F., Pasquariello, C. & Mico, A. (2006). Biodeterioration of paper: A SEM study of fungal spoilage reproduced under controlled conditions. Macromol Symp 238, 5766.Google Scholar
Pinzari, F., Zotti, M., Mico, A. & Calvini, P. (2010). Biodegradation of inorganic components in paper documents: Formation of calcium oxalate crystals as a consequence of Aspergillus terreus Thom growth. Int Biodeterior Biodegrad 64, 499505.Google Scholar
Proniewicz, L.M., Paluszkiewicz, C., Weselucha-Birczynska, A., Baranski, A. & Dutka, D. (2002). FT-IR and FT-Raman study oh hydrothermally degraded ground wood containing paper. J Mol Struct 614, 345353.Google Scholar
Proniewicz, L.M., Paluszkiewicz, C., Weselucha-Birczynska, A., Marjcherczyk, H., Baranski, A. & Konieczna, A. (2001). FT-IR and FT-Raman study of hydrothermally degraded cellulose. J Mol Struct 596, 163169.Google Scholar
Rakotonirainy, M.S., Heude, E. & Lavédrine, B. (2007). Isolation and attempts of biomolecular characterization of fungal strains associated to foxing on a 19th century book. J Cult Herit 8, 126133.Google Scholar
Saikia, B.J. & Parthasarathy, G. (2010). Fourier transform infrared spectroscopic characterization of kaolinite from Assam and Meghalaya, Northeastern India. J Mod Phys 1, 206210.Google Scholar
Sequeira, S., Cabrita, E.J. & Macedo, M.F. (2012). Antifungal on paper conservation: An overview. Int Biodeterior Biodegrad 74, 6786.Google Scholar
Song, X., Chen, F. & Liu, F. (2011). Study on the reaction of alkyl ketene dimer (AKD) and cellulose fiber. Bioresources 7(1), 652662.Google Scholar
Weinstock, I.A., Atalla, R.H., Agarwal, U.P. & Minor, J.L. (1993). Fourier transform Raman spectroscopic studies of a novel wood pulp bleaching system. Spectrochim Acta A 49(5–6), 819829.Google Scholar
Wilson, I. (2006). Filler and coating pigments of papermaking. In Industrial Minerals & Rocks: Commodities, Markets, and Uses, Kogel, J.E., Trivedi, N.C., Barker, J.M. & Krukowski, S.T. (Eds.), pp. 12871300. Colorado, USA: Society for Mining, Metallurgy, and Exploration, Inc.Google Scholar
Zotti, M., Ferroni, A. & Calvini, P. (2008). Micro fungal biodeterioration of historic paper: Preliminary FTIR and microbiological analyses. Int Biodeterior Biodegrad 62, 186194.Google Scholar
Zotti, M., Ferroni, A. & Calvini, P. (2011). Mycological and FTIR analysis of biotic foxing on paper substrates. Int Biodeterior Biodegrad 65, 569578.Google Scholar
Zyska, B. (1997). Fungi isolated from library materials: A review of the literature. Int Biodeterior Biodegrad 40(1), 4351.Google Scholar