Skip to main content Accessibility help

An Improved Visual Tracking Method in Scanning Electron Microscope

  • Changhai Ru (a1) (a2), Yong Zhang (a3), Haibo Huang (a2) and Tao Chen (a2)


Since their invention, nanomanipulation systems in scanning electron microscopes (SEMs) have provided researchers with an increasing ability to interact with objects at the nanoscale. However, most nanomanipulators that are capable of generating nanometer displacement operate in an open-loop without suitable feedback mechanisms. In this article, a robust and effective tracking framework for visual servoing applications is presented inside an SEM to achieve more precise tracking manipulation and measurement. A subpixel template matching tracking algorithm based on contour models in the SEM has been developed to improve the tracking accuracy. A feed-forward controller is integrated into the control system to improve the response time. Experimental results demonstrate that a subpixel tracking accuracy is realized. Furthermore, the robustness against clutter can be achieved even in a challenging tracking environment.


Corresponding author

Corresponding author. E-mail:


Hide All
Davis, C.Q. & Freeman, D.M. (1998). Statistics of subpixel registration algorithms based on spatiotemporal gradients or block matching. Opt Eng 37, 12901298.
Dietzel, D., Mönninghoff, T., Jansen, L., Fuchs, H., Ritter, C., Schwarz, U.D. & Schirmeisen, A. (2007). Interfacial friction obtained by lateral manipulation of nanoparticles using atomic force microscopy techniques. J Appl Phys 102, 084306.
Drummond, T. & Cipolla, R. (2002). Real-time visual tracking of complex structures. IEEE Trans Pattern Anal 24, 932946.
Eigler, D.M. & Schweizer, E.K. (1990). Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524526.
Falvo, M.R., Taylor, R.M., Helser, A., Chi, V., Brooks, F.P., Washburn, S. & Superne, R. (1999). Nanometre-scale rolling and sliding of carbon nanotubes. Nature 397, 236238.
Fatikow, S., Eichhorn, V., Stolle, C. & Sievers, T. (2008). Development and control of a versatile nanohandling robot cell. Mechatronics 18, 370380.
Fatikow, S., Wich, T., Hulsen, H., Sievers, T. & Jahnisch, M. (2007). Microrobot system for automatic nanohandling inside a scanning electron microscope. IEEE/ASME Trans Mechatron 12, 244252.
Fukuda, T., Nakajima, M., Liu, P. & ElShimy, H. (2009). Nanofabrication, nanoinstrumentation and nanoassembly by nanorobotic manipulation. Int J Robotics Res 28, 537547.
Greminger, M.A. & Nelson, B.J. (2004). Vision-based force measurement. IEEE Trans Pattern Anal 26, 290298.
Hager, G.D. & Belhumeur, P.N. (1998). Efficient region tracking with parametric models of geometry and illumination. IEEE Trans Pattern Anal 20(10), 10251039.
Kass, M., Witkin, A. & Terzopoulos, D. (1988). Snakes: Active contour models. Int J Comput Vision 1, 321331.
Kratochvil, B.E., Dong, L.X. & Nelson, B.J. (2009). Real-time rigid-body visual tracking in a scanning electron microscope. Int J Robot Res 28, 498511.
Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9, 962966.
Pressigout, M. & Marchand, E. (2007). Real-time hybrid tracking using edge and texture information. Int J Robotics Res 26, 689713.
Prior, M., Makarovski, A. & Finkelstein, G. (2007). Low-temperature conductive tip atomic force microscope for carbon nanotube probing and manipulation. Appl Phys Lett 91, 053112.
Rosolen, G. & King, W. (1998). An automated image alignment system for the scanning electron microscope. Scanning 20, 495500.
Ru, C. & Sun, L. (2005). Improving positioning accuracy of piezoelectric actuators by feed-forward hysteresis compensation based on a new mathematical model. Rev Sci Instrum 76, 095111.
Rubio, F.J., Heckl, W.M. & Stark, R.W. (2005). Nanomanipulation by atomic force microscopy. Adv Eng Mater 7, 193196.
Sierra, D.P., Weir, N.A. & Jones, J.F. (2005). A review of research in the field of nanorobotics. Technical Report SAND2005, 6808, Sandia National Laboratories.
Sievers, T. & Fatikow, S. (2006). Real-time object tracking for the robot-based nanohandling in a scanning electron microscope. J Micromechatronics 18, 267284.
Suga, H., Naitoh, Y., Tanaka, M., Horikawa, M., Kobori, H. & Shimizu, T. (2009). Nanomanipulation of single nanoparticle using a carbon nanotube probe in a scanning electron microscope. Appl Phys Exp 2, 055004.
Zhi, W., Li, Q., Zhong, S. & He, S. (2005). Fast adaptive threshold for the canny edge detector. Proc. SPIE 6044, 60441.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed