Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T14:16:57.552Z Has data issue: false hasContentIssue false

Ad Hoc Auto-Tuning of Aberrations Using High-Resolution STEM Images by Autocorrelation Function

Published online by Cambridge University Press:  31 July 2012

Hidetaka Sawada*
Affiliation:
JEOL Ltd., EMBU, 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan
Masashi Watanabe
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA
Izuru Chiyo
Affiliation:
JEOL Ltd., EMBU, 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan
*
Corresponding author. E-mail: hidesawada@mail.goo.ne.jp
Get access

Abstract

A method for measurement of the aberration status from high-resolution dark-field images is developed using scanning transmission electron microscopy (STEM), called the Segmented Image Autocorrelation function Matrix (SIAM). The method employs an autocorrelation function from the segmented area in the defocused STEM images from an aligned crystalline specimen to measure the defocus and twofold astigmatism for the probe-forming system. The values measured using this method can be fed directly back to the instrument by changing the strength of the stigmator and the objective lens of the microscope. It is successfully demonstrated that the feedback system can automatically correct the defocus and twofold astigmatism of the microscope after several iterations using practical STEM images from an actual crystalline specimen.

Type
Special Section: Aberration-Corrected Electron Microscopy
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cowley, J.M. (1986). Electron diffraction phenomena observed with a high resolution STEM instrument. J Electron Micr Tech 3, 2544.CrossRefGoogle Scholar
Dellby, N., Krivanek, O.L., Nellist, P.D., Batson, P.E. & Lupini, A.R. (2001). Progress in aberration-corrected scanning transmission electron microscopy. J Electron Microsc 50, 177185.Google ScholarPubMed
Haider, M., Uhlemann, S., Schwan, E., Rose, H., Kabius, B. & Urban, K. (1998). Electron microscopy image enhanced. Nature 392, 768769.CrossRefGoogle Scholar
Haider, M., Uhlemann, S. & Zach, J. (2000). Upper limits for the residual aberration of a high-resolution aberration-corrected STEM. Ultramicroscopy 81, 163175.CrossRefGoogle ScholarPubMed
Hosokawa, F., Sannomiya, T., Sawada, H., Kaneyama, T., Kondo, Y., Hori, M., Yuasa, S., Kawazoe, M., Nakamichi, Y., Tanishiro, T., Yamamoto, N. & Takayanagi, K. (2006). Design and development of Cs correctors for 300kV TEM and STEM. IMC 16, 582.Google Scholar
Krivanek, O.L., Dellby, N. & Lupini, A.R. (1999). Towards sub-Å electron beams. Ultramicroscopy 78, 111.CrossRefGoogle Scholar
Lin, J.A. & Cowley, J.M. (1986). Calibration of the operating parameters for an HB5 STEM instrument. Ultramicroscopy 19, 3142.Google Scholar
Lupini, A.R., Wang, P., Nellist, P.D., Kirkland, AI. & Pennycook, S.J. (2010). Aberration measurement using the Ronchigram contrast transfer function. Ultramicroscopy 110, 891898.CrossRefGoogle ScholarPubMed
Ramasse, Q.M. & Bleloch, A.L. (2005). Diagnosis of aberrations from crystalline samples in scanning transmission electron microscopy. Ultramicroscopy 106, 3756.Google Scholar
Rose, H. (1990). Outline of a spherically corrected semiaplanatic medium-voltage transmission electron microscope. Optik 85, 1924.Google Scholar
Rudnaya, M.E., Broek, W. Van den, Doornbos, R.M.P., Mattheij, R.M.M. & Maubach, J.M.L. (2011). Defocus and twofold astigmatism correction in HAADF-STEM. Ultramicroscopy 111, 10431054.Google Scholar
Sawada, H., Sannomiya, T., Hosokawa, F., Nakamichi, T., Kaneyama, T., Tomita, T., Kondo, Y., Tanaka, T., Oshima, Y., Tanishiro, Y. & Takayanagi, K. (2008). Measurement method of aberration from Ronchigram by autocorrelation function. Ultramicroscopy 108, 14671475.Google Scholar
Sawada, H., Sasaki, T., Hosokawa, F., Yuasa, S., Terao, M., Kawazoe, M., Nakamichi, T., Kaneyama, T., Kondo, Y., Kimoto, K. & Suenaga, K. (2009). Correction of higher order geometrical aberration by triple three-fold astigmatism field. J Electron Microsc 58, 341357.Google Scholar
Sawada, H., Watanabe, M., Okunishi, E. & Kondo, Y. (2011). Auto-tuning of aberrations using high-resolution STEM images by auto-correlation function. Microsc Microanal 17(S2), 13081309.CrossRefGoogle Scholar
Yamazaki, T., Kotaka, Y., Kikuchi, Y. & Watanabe, K. (2006). Precise measurement of third-order spherical aberration using low-order zone-axis Ronchigrams. Ultramicroscopy 106, 153163.Google Scholar