Skip to main content Accessibility help

Accurate Nanoscale Crystallography in Real-Space Using Scanning Transmission Electron Microscopy

  • J. Houston Dycus (a1), Joshua S. Harris (a1), Xiahan Sang (a1), Chris M. Fancher (a1), Scott D. Findlay (a2), Adedapo A. Oni (a1), Tsung-ta E. Chan (a1), Carl C. Koch (a1), Jacob L. Jones (a1), Leslie J. Allen (a3), Douglas L. Irving (a1) and James M. LeBeau (a1)...


Here, we report reproducible and accurate measurement of crystallographic parameters using scanning transmission electron microscopy. This is made possible by removing drift and residual scan distortion. We demonstrate real-space lattice parameter measurements with <0.1% error for complex-layered chalcogenides Bi2Te3, Bi2Se3, and a Bi2Te2.7Se0.3 nanostructured alloy. Pairing the technique with atomic resolution spectroscopy, we connect local structure with chemistry and bonding. Combining these results with density functional theory, we show that the incorporation of Se into Bi2Te3 causes charge redistribution that anomalously increases the van der Waals gap between building blocks of the layered structure. The results show that atomic resolution imaging with electrons can accurately and robustly quantify crystallography at the nanoscale.


Corresponding author

* Corresponding author.


Hide All
Allen, L., D’Alfonso, A. & Findlay, S. (2015). Modelling the inelastic scattering of fast electrons. Ultramicroscopy 151, 1122.
Billinge, S.J.L. & Levin, I. (2007). The problem with determining atomic structure at the nanoscale. Science 316, 561565.
Björkman, T., Gulans, A., Krasheninnikov, A.V. & Nieminen, R.M. (2012). Are we van der Waals ready? J Phys Condens Matter 24, 424218.
Blöchl, P.E. (1994). Projector augmented-wave method. Phys Rev B 50, 17953.
Chan, T.-T.E., LeBeau, J.M., Venkatasubramanian, R., Thomas, P., Stuart, J. & Koch, C.C. (2013). Carrier concentration modulation by hot pressing pressure in n-type nanostructured Bi(Se)Te alloy. Appl Phys Lett 103, 144106.
Denton, A.R. & Ashcroft, N.W. (1991). Vegard’s law. Phys Rev A 43, 31613164.
Drabble, J.R. & Goodman, C.H.L. (1958). Chemical bonding in bismuth telluride. J Phys Chem Solids 5, 142144.
Dycus, J.H., White, R.M., Pierce, J.M., Venkatasubramanian, R. & LeBeau, J.M. (2013). Atomic scale structure and chemistry of Bi2Te3/GaAs interfaces grown by metallorganic van der Waals epitaxy. Appl Phys Lett 102, 081601081601-4.
Esteves, G., Fancher, C.M. & Jones, J.L. (2014). In situ characterization of polycrystalline ferroelectrics using x-ray and neutron diffraction. J Mater Res 30, 340–356.
Harl, J. & Kresse, G. (2008). Cohesive energy curves for noble gas solids calculated by adiabatic connection fluctuation-dissipation theory. Phys Rev B 77, 045136.
Harl, J. & Kresse, G. (2009). Accurate bulk properties from approximate many-body techniques. Phys Rev Lett 103, 056401.
Harl, J., Schimka, L. & Kresse, G. (2010). Assessing the quality of the random phase approximation for lattice constants and atomization energies of solids. Phys Rev B 81, 115126.
Henkelman, G., Arnaldsson, A. & Jónsson, H. (2006). A fast and robust algorithm for bader decomposition of charge density. Comput Mater Sci 36, 354360.
Jiang, Y., Wang, Y., Sagendorf, J., West, D., Kou, X., Wei, X., He, L., Wang, K.L., Zhang, S. & Zhang, Z. (2013). Direct atom-by-atom chemical identification of nanostructures and defects of topological insulators. Nano Lett 13, 28512856.
Kim, Y.-M., He, J., Biegalski, M.D., Ambaye, H., Lauter, V., Christen, H.M., Pantelides, S.T., Pennycook, S.J., Kalinin, S.V. & Borisevich, A.Y. (2012). Probing oxygen vacancy concentration and homogeneity in solid-oxide fuel-cell cathode materials on the subunit-cell level. Nat Mater 11, 888894.
Kimoto, K., Asaka, T., Yu, X., Nagai, T., Matsui, Y. & Ishizuka, K. (2010). Local crystal structure analysis with several picometer precision using scanning transmission electron microscopy. Ultramicroscopy 110, 778782.
Kresse, G. & Furthmüller, J. (1996a). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6, 1550.
Kresse, G. & Furthmüller, J. (1996b). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54, 11169.
Kresse, G. & Hafner, J. (1993). Ab initio molecular dynamics for liquid metals. Phys Rev B 47, 558561.
Kresse, G. & Hafner, J. (1994). Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B 49, 14251.
Kresse, G. & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59, 1758.
Lan, Y., Poudel, B., Ma, Y., Wang, D., Dresselhaus, M.S., Chen, G. & Ren, Z. (2009). Structure study of bulk nanograined thermoelectric bismuth antimony telluride. Nano Lett 9, 14191422.
Larson, A.C. & Von Dreele, R.B. (2004). General Structure Analysis System (GSAS). Los Alamos National Laboratory Report No. Laur 86-748 (unpublished).
Martin, J., Wang, L., Chen, L. & Nolas, G.S. (2009). Enhanced See-beck coefficient through energy-barrier scattering in PbTe nanocomposites. Phys Rev B 79, 115311.
Nakajima, S. (1963). The crystal structure of Bi2Te3−x Se x . J Phys Chem Solids 24, 479485.
Page, K., Proffen, T., Niederberger, M. & Seshadri, R. (2010). Probing local dipoles and ligand structure in BaTiO 3 nanoparticles. Chem Mater 22, 43864391.
Park, K., Nomura, Y., Arita, R., Llobet, A. & Louca, D. (2013). Local strain and anharmonicity in the bonding of Bi2Se3Gx Te x topological insulators. Phys Rev B 88, 224108.
Pennycook, S.J. & Nellist, P.D. (2011). Scanning transmission electron microscopy: Imaging and analysis. Springer-Verlag, New York.
Perdew, J.P., Burke, K. & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Phys Rev Lett 77, 3865.
Perdew, J., Burke, K. & Ernzerhof, M. (1997). Generalized gradient approximation made simple [Phys Rev Lett 77, 3865 (1996)] Phys Rev Lett 78, 13961396.
Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., Vashaee, D., Chen, X., Liu, J., Dresselhaus, M.S., Chen, G. & Ren, Z. (2008). High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634638.
Sang, X. & LeBeau, J.M. (2014). Revolving scanning transmission electron microscopy: Correcting sample drift distortion without prior knowledge. Ultramicroscopy 138, 2835.
Sang, X., Oni, A.A. & LeBeau, J.M. (2014). Atom column indexing: Atomic resolution image analysis through a matrix representation. Microsc Microanal 20, 17641771.
Sanville, E., Kenny, S.D., Smith, R. & Henkelman, G. (2007). Improved grid-based algorithm for bader charge allocation. J Comput Chem 28, 899908.
So, Y.-G. & Kimoto, K. (2012). Effect of specimen misalignment on local structure analysis using annular dark-field imaging. J Electron Microsc (Tokyo) 61, 207215.
Tang, W., Sanville, E. & Henkelman, G. (2009). A grid-based bader analysis algorithm without lattice bias. J Phys Condens Matt 21, 084204.
Thomas, J.M. (2012). Centenary: The birth of X-ray crystallography. Nature 491, 186187.
Toby, B.H. (2001). Expgui, a graphical user interface for GSAS. J Appl Crystallogr 34, 210213.
Wiese, J.R. & Muldawer, L. (1960). Lattice constants of Bi2Te3-Bi2Se3 solid solution alloys. J Phys Chem Solids 15, 1316.
Yankovich, A.B., Berkels, B., Dahmen, W., Binev, P., Sanchez, S.I., Bradley, S.A., Li, A., Szlufarska, I. & Voyles, P.M. (2014). Picometre-precision analysis of scanning transmission electron microscopy images of platinum nanocatalysts. Nat Commun 5, 4155.


Related content

Powered by UNSILO

Accurate Nanoscale Crystallography in Real-Space Using Scanning Transmission Electron Microscopy

  • J. Houston Dycus (a1), Joshua S. Harris (a1), Xiahan Sang (a1), Chris M. Fancher (a1), Scott D. Findlay (a2), Adedapo A. Oni (a1), Tsung-ta E. Chan (a1), Carl C. Koch (a1), Jacob L. Jones (a1), Leslie J. Allen (a3), Douglas L. Irving (a1) and James M. LeBeau (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.