Skip to main content Accessibility help
×
Home

Suppressing Electron Exposure Artifacts: An Electron Scanning Paradigm with Bayesian Machine Learning

Published online by Cambridge University Press:  26 July 2016


Karl Hujsak
Affiliation:
Department of Materials Science & Engineering, Northwestern University, 2170 Campus Dr, B553 Silverman Hall, Evanston, IL 60208, USA
Benjamin D. Myers
Affiliation:
Department of Materials Science & Engineering, Northwestern University, 2170 Campus Dr, B553 Silverman Hall, Evanston, IL 60208, USA Electron Probe and Instrumentation Center, NUANCE, Northwestern University, 2220 Campus Dr, 2036 Cook Hall, Evanston, IL 60208, USA
Eric Roth
Affiliation:
Department of Materials Science & Engineering, Northwestern University, 2170 Campus Dr, B553 Silverman Hall, Evanston, IL 60208, USA Electron Probe and Instrumentation Center, NUANCE, Northwestern University, 2220 Campus Dr, 2036 Cook Hall, Evanston, IL 60208, USA
Yue Li
Affiliation:
Applied Physics Program, Northwestern University, 2170 Campus Dr, B553 Silverman Hall, Evanston, IL 60208, USA
Vinayak P. Dravid
Affiliation:
Department of Materials Science & Engineering, Northwestern University, 2170 Campus Dr, B553 Silverman Hall, Evanston, IL 60208, USA Electron Probe and Instrumentation Center, NUANCE, Northwestern University, 2220 Campus Dr, 2036 Cook Hall, Evanston, IL 60208, USA Applied Physics Program, Northwestern University, 2170 Campus Dr, B553 Silverman Hall, Evanston, IL 60208, USA
Corresponding
E-mail address:

Abstract

Electron microscopy of biological, polymeric, and other beam-sensitive structures is often hampered by deleterious electron beam interactions. In fact, imaging of such beam-sensitive materials is limited by the allowable radiation dosage rather that capabilities of the microscope itself, which has been compounded by the availability of high brightness electron sources. Reducing dwell times to overcome dose-related artifacts, such as radiolysis and electrostatic charging, is challenging due to the inherently low contrast in imaging of many such materials. These challenges are particularly exacerbated during dynamic time-resolved, fluidic cell imaging, or three-dimensional tomographic reconstruction—all of which undergo additional dosage. Thus, there is a pressing need for the development of techniques to produce high-quality images at ever lower electron doses. In this contribution, we demonstrate direct dose reduction and suppression of beam-induced artifacts through under-sampling pixels, by as much as 80% reduction in dosage, using a commercial scanning electron microscope with an electrostatic beam blanker and a dictionary learning in-painting algorithm. This allows for multiple sparse recoverable images to be acquired at the cost of one fully sampled image. We believe this approach may open new ways to conduct imaging, which otherwise require compromising beam current and/or exposure conditions.


Type
Technique and Instrumentation Development
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below.

References

Anderson, H.S., Ilic-Helms, J., Rohrer, B., Wheeler, J. & Larson, K. (2013). Sparse imaging for fast electron microscopy. In IS&T/SPIE Electronic Imaging, International Society for Optics and Photonics, Burlingame, California, USA, February 3, 2013, pp. 86570C–86512.Google Scholar
Baraniuk, R.G. (2007). Compressive sensing. IEEE Signal Process Mag 24(4), 118124.CrossRefGoogle Scholar
Binev, P., Dahmen, W., DeVore, R., Lamby, P., Savu, D. & Sharpley, R. (2012). Compressed Sensing and Electron Microscopy. New York Dordrecht Heidelberg London: Springer.CrossRefGoogle Scholar
Boudaïffa, B., Cloutier, P., Hunting, D., Huels, M.A. & Sanche, L. (2000). Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons. Science 287(5458), 16581660.Google ScholarPubMed
Bursill, L., Thomas, J. & Rao, K.-J. (1981). Stability of zeolites under electron irradiation and imaging of heavy cations in silicates. Nature 289(5794), 157158.CrossRefGoogle Scholar
Candes, E. & Romberg, J. (2007). Sparsity and incoherence in compressive sampling. Inverse Probl 23(3), 969.CrossRefGoogle Scholar
Candès, E.J., Romberg, J. & Tao, T. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52(2), 489509.CrossRefGoogle Scholar
Coates, I.A. & Smith, D.K. (2010). Hierarchical assembly—dynamic gel–nanoparticle hybrid soft materials based on biologically derived building blocks. J Mater Chem 20(32), 66966702.CrossRefGoogle Scholar
Cosslett, V. (1978). Radiation damage in the high resolution electron microscopy of biological materials: A review. J Microsc 113(2), 113129.CrossRefGoogle ScholarPubMed
d’Alfonso, A., Freitag, B., Klenov, D. & Allen, L. (2010). Atomic-resolution chemical mapping using energy-dispersive x-ray spectroscopy. Phys Rev B 81(10), 100101.CrossRefGoogle Scholar
de Jonge, N., Peckys, D.B., Kremers, G. & Piston, D. (2009). Electron microscopy of whole cells in liquid with nanometer resolution. Proc Natl Acad Sci 106(7), 21592164.CrossRefGoogle ScholarPubMed
de Jonge, N. & Ross, F.M. (2011). Electron microscopy of specimens in liquid. Nat Nanotechnol 6(11), 695704.CrossRefGoogle ScholarPubMed
Donoho, D.L. (2006). Compressed sensing. IEEE Trans Inf Theory 52(4), 12891306.CrossRefGoogle Scholar
Duarte, M.F., Davenport, M.A., Takhar, D., Laska, J.N., Sun, T., Kelly, K.E. & Baraniuk, R.G. (2008). Single-pixel imaging via compressive sampling. IEEE Signal Process Mag 25(2), 83.CrossRefGoogle Scholar
Egerton, R., Li, P. & Malac, M. (2004). Radiation damage in the TEM and SEM. Micron 35(6), 399409.CrossRefGoogle ScholarPubMed
Glaeser, R.M. & Taylor, K.A. (1978). Radiation damage relative to transmission electron microscopy of biological specimens at low temperature: A review. J Microsc 112(1), 127138.CrossRefGoogle ScholarPubMed
Hofmann, S., Sharma, R., Ducati, C., Du, G., Mattevi, C., Cepek, C., Cantoro, M., Pisana, S., Parvez, A. & Cervantes-Sodi, F. (2007). In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation. Nano Lett 7(3), 602608.CrossRefGoogle ScholarPubMed
Isaacson, M., Johnson, D. & Crewe, A. (1973). Electron beam excitation and damage of biological molecules; its implications for specimen damage in electron microscopy. Radiat Res 55(2), 205224.CrossRefGoogle ScholarPubMed
Kimoto, K., Asaka, T., Nagai, T., Saito, M., Matsui, Y. & Ishizuka, K. (2007). Element-selective imaging of atomic columns in a crystal using STEM and EELS. Nature 450(7170), 702704.CrossRefGoogle Scholar
Kotakoski, J., Jin, C., Lehtinen, O., Suenaga, K. & Krasheninnikov, A. (2010). Electron knock-on damage in hexagonal boron nitride monolayers. Phys Rev B 82(11), 113404.CrossRefGoogle Scholar
Li, W.-J., Mauck, R.L., Cooper, J.A., Yuan, X. & Tuan, R.S. (2007). Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. J Biomech 40(8), 16861693.CrossRefGoogle ScholarPubMed
Liu, Y., Lin, X.-M., Sun, Y. & Rajh, T. (2013). In situ visualization of self-assembly of charged gold nanoparticles. J Am Chem Soc 135(10), 37643767.CrossRefGoogle ScholarPubMed
Luttun, A., Tjwa, M., Moons, L., Wu, Y., Angelillo-Scherrer, A., Liao, F., Nagy, J.A., Hooper, A., Priller, J. & De Klerck, B. (2002). Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat Med 8(8), 831840.Google ScholarPubMed
Park, S.Y., Lytton-Jean, A.K., Lee, B., Weigand, S., Schatz, G.C. & Mirkin, C.A. (2008). DNA-programmable nanoparticle crystallization. Nature 451(7178), 553556.CrossRefGoogle ScholarPubMed
Saghi, Z., Benning, M., Leary, R., Macias-Montero, M., Borras, A. & Midgley, P.A. (2015). Reduced-dose and high-speed acquisition strategies for multi-dimensional electron microscopy. Adv Struct Chem Imaging 1(1), 110.CrossRefGoogle Scholar
Shih, T.K., Chang, R.-C., Lu, L.-C., Ko, W.-C. & Wang, C.-C. (2004). Adaptive digital image inpainting. In 18th International Conference on Advanced Information Networking and Applications, AINA 2004., IEEE, Fukuoka, Japan, March 30, 2004, pp. 71–76.Google Scholar
Stanciu, S.G., Hristu, R. & Stanciu, G.A. (2011). Digital image inpainting and microscopy imaging. Microsc Res Tech 74(11), 10491057.CrossRefGoogle ScholarPubMed
Stevens, A., Yang, H., Carin, L., Arslan, I. & Browning, N.D. (2014). The potential for Bayesian compressive sensing to significantly reduce electron dose in high-resolution STEM images. Microscopy 63(1), 4151.CrossRefGoogle ScholarPubMed
Talmon, Y. (1996). Transmission electron microscopy of complex fluids: The state of the art. Ber Bunsenges Phys Chem 100(3), 364372.CrossRefGoogle Scholar
Teweldebrhan, D. & Balandin, A. (2009). Modification of graphene properties due to electron-beam irradiation. Appl Phys Lett 94(1), 013101.CrossRefGoogle Scholar
Wang, Z., Bovik, A.C., Sheikh, H.R. & Simoncelli, E.P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Trans Image Process 13(4), 600612.CrossRefGoogle ScholarPubMed
Williams, J., Elliman, R., Brown, W. & Seidel, T. (1985). Dominant influence of beam-induced interface rearrangement on solid-phase epitaxial crystallization of amorphous silicon. Phys Rev Lett 55(14), 1482.CrossRefGoogle ScholarPubMed
Woehl, T.J., Jungjohann, K.L., Evans, J.E., Arslan, I., Ristenpart, W.D. & Browning, N.D. (2013). Experimental procedures to mitigate electron beam induced artifacts during in situ fluid imaging of nanomaterials. Ultramicroscopy 127, 5363.CrossRefGoogle ScholarPubMed
Yuk, J.M., Park, J., Ercius, P., Kim, K., Hellebusch, D.J., Crommie, M.F., Lee, J.Y., Zettl, A. & Alivisatos, A.P. (2012). High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336(6077), 6164.CrossRefGoogle ScholarPubMed
Zhou, M., Chen, H., Paisley, J., Ren, L., Li, L., Xing, Z., Dunson, D., Sapiro, G. & Carin, L. (2012). Nonparametric Bayesian dictionary learning for analysis of noisy and incomplete images. IEEE Trans Image Process 21(1), 130144.CrossRefGoogle ScholarPubMed
Zhou, M., Chen, H., Ren, L., Sapiro, G., Carin, L. & Paisley, J.W. (2009). Non-parametric Bayesian dictionary learning for sparse image representations. In Advances in Neural Information Processing Systems, Vancouver, Canada, December 7, 2010, pp. 2295–2303.Google Scholar

Altmetric attention score


Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 33
Total number of PDF views: 314 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 2nd December 2020. This data will be updated every 24 hours.

Hostname: page-component-79f79cbf67-b9sxz Total loading time: 0.789 Render date: 2020-12-02T03:31:27.175Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Wed Dec 02 2020 03:06:20 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Suppressing Electron Exposure Artifacts: An Electron Scanning Paradigm with Bayesian Machine Learning
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Suppressing Electron Exposure Artifacts: An Electron Scanning Paradigm with Bayesian Machine Learning
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Suppressing Electron Exposure Artifacts: An Electron Scanning Paradigm with Bayesian Machine Learning
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *