Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-19T16:23:43.165Z Has data issue: false hasContentIssue false

Suberized Cell Walls of Cork from Cork Oak Differ from Other Species

Published online by Cambridge University Press:  31 August 2010

Rita Teresa Teixeira*
Affiliation:
Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade Técnica de Lisboa, 1349-017, Portugal
Helena Pereira
Affiliation:
Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade Técnica de Lisboa, 1349-017, Portugal
*
Corresponding author. E-mail: rtteixeira@isa.utl.pt
Get access

Abstract

Plants have suberized cells that act as protective interfaces with the environment or between different plant tissues. A lamellar structure of alternating dark and light bands has been found upon transmission electron microscopy (TEM) observation of cork cells and considered a typical feature of the suberized secondary wall. We observed cork cells from periderms of Quercus suber, Quercus cerris, Solanum tuberosum, and Calotropis procera by TEM after uranyl acetate and lead citrate staining. A lamellated structure was observed in S. tuberosum and C. procera but not in Q. suber and Q. cerris where the suberized cell wall showed a predominantly hyaline aspect with only a dark dotted staining. Removal of suberin from Q. suber cells left a thinner secondary wall that lost the translucent aspect. We hypothesize that the species' specific chemical composition of suberin will result in different three-dimensional macromolecular development and in a different spatial location of lignin and other aromatics. A lamellated ultrastructure is therefore not a general feature of suberized cells.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bernards, M.A. (2002). Demystifying suberin. Can J Bot 80, 227240.Google Scholar
Biggs, A.R. & Stobbs, L.W. (1986). Fine structure of the suberized cell walls in the boundary zone and necrophylactic periderm in wounded peach bark. Can J Bot 64, 16061610.CrossRefGoogle Scholar
Compagnom, V., Diehl, P., Benveniste, I., Meyer, D., Schaller, H., Schreiber, L., Franke, R. & Pinot, F. (2009). CYP86B1 is required for very long chain ω-hydroxyacid and α,ω-dicarboxylic acid synthesis in root and seed suberin polyester. Plant Physiol 150, 18311843.Google Scholar
Donaldson, L.A. (2001). Lignification and lignin topochemistry: An ultrastructural view. Phytochemistry 57, 859873.CrossRefGoogle ScholarPubMed
Franke, R., Briesen, I., Wojciechowski, T., Faust, A., Yephemov, A., Nawrath, C. & Schreiber, L. (2005). Apoplastic polyesters in Arabidopsis surface tissues: A typical suberin and particular cutin. Phytochemistry 66, 26432658.CrossRefGoogle ScholarPubMed
Franke, R., Höfer, R., Briesen, I., Emsermann, M., Efremova, N., Yephremov, A. & Schreiber, L. (2009). The DAISY gene from Arabidopsis encodes a fatty acid elongase condensing enzyme involved in the biosynthesis of aliphatic suberin in roots and the chalaza-micropyle region of seeds. Plant J 57, 8095.Google Scholar
Franke, R. & Schreiber, L. (2007). Suberin—A biopolyester forming apoplastic plant interfaces. Curr Opin Plant Biol 10, 252259.Google Scholar
Gibson, L.J., Easterling, K.E. & Ashby, M.F. (1981). The structure and mechanics of cork. Proc R Soc Lond A377, 99117.Google Scholar
Graça, J. & Pereira, H. (1997). Cork suberin: A glycerol based polyester. Holzforschung 51, 225234.CrossRefGoogle Scholar
Graça, J. & Pereira, H. (2000a). Suberin structure in potato periderm: Glycerol, long-chain monomers, and glycerol and feruloyl dimmers. J Agri Food Chem 48, 54765483.CrossRefGoogle Scholar
Graça, J. & Pereira, H. (2000b). Methanolysis of bark suberins: Analysis of glycerol and acid monomers. Phytochem Anal 11, 4551.3.0.CO;2-8>CrossRefGoogle Scholar
Graça, J. & Santos, S. (2007). Suberin: A biopolyester of plants' skin. Macromol Biosci 7, 128135.CrossRefGoogle ScholarPubMed
Hartmann, K., Peiter, E., Koch, K., Schubert, S. & Schreiber, L. (2002). Chemical composition and ultrastructure of broad bean (Vicia faba L.) nodule endodermis in comparison to the root endodermis. Planta 215, 1425.CrossRefGoogle Scholar
Heumann, H.G. (1990). A simple method for improved visualization of the lamellae structure of cutinized and suberized plant cell walls by electron microscopy. Stain Technol 65, 183187.Google Scholar
Höfer, R., Briesen, I., Beck, M., Pinot, F., Schreiber, L. & Franke, R. (2008). The Arabidopsis cytochrome P450 CYP86A1 encodes a fatty acid ω-hydroxylase involved in suberin monomer biosynthesis. J Exp Bot 59, 23472360.CrossRefGoogle ScholarPubMed
Marques, A.V., Pereira, H., Meier, D. & Faix, O. (1996). Isolation and characterization of a guaiacyl lignin from saponified cork of Quercus suber L. Holzforschung 50, 393400.Google Scholar
Marques, A.V., Pereira, H., Rodrigues, J., Meier, D. & Faix, O. (2006). Isolation and comparative characterization of a bjorkman lignin from the saponified cork of douglas-fir bark. J Anal Appl Pyrolysis 77, 169176.CrossRefGoogle Scholar
Molina, I., Beisson-Li, Y., Beisson, F., Ohlrogge, J.B. & Pollard, M. (2009). Identification of an Arabidopsis Feruloyl-CoA transferase required for suberin. Plant Physiol 151, 13171328.CrossRefGoogle ScholarPubMed
Pereira, H. (1988a). Chemical composition and variability of cork form Quercus suber L. Wood Sci Technol 22, 211218.CrossRefGoogle Scholar
Pereira, H. (1988b). Structure and chemical composition of cork from Calotropis procera (Ait) R. Br. IAWA Bull 9, 5358.Google Scholar
Pereira, H. (2007). Cork: Biology, Production and Uses. Amsterdam: Elsevier.Google Scholar
Pereira, H. & Marques, A.V. (1988). The effect of chemical treatments on the cellular structure of cork. IAWA Bull 9, 337345.CrossRefGoogle Scholar
Pereira, H., Rosa, M.E. & Fortes, M.A. (1987). The cellular structure of cork from Quercus suber L. IAWA Bull 8, 213218.Google Scholar
Rainbow, A. & White, D.J.B. (1972). Preliminary observations of the ultrastructure of maturing cork-cells from tubers of Solanum tuberosum L. New Phytol 71, 899902.CrossRefGoogle Scholar
Reynolds, E. (1963). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Sci 17, 208212.Google ScholarPubMed
Richardson, W.D. & Davies, H.G. (1980). Quantitative observations on the kinetics and mechanisms of binding of electron stains to thin sections through hen erytrocytes. J Cell Sci 46, 253278.Google Scholar
Rosa, M.E., Matos, A.P., Fortes, M.A. & Pereira, H. (1991). Algumas características da cortiça verde. Actas do 5° encontro nacional da sociedade portuguesa de materiais. Sociedade portuguesa de materiais. Lisboa 2, 737746.Google Scholar
Schmidt, H.W. & Schönherr, J. (1982). Fine structure of isolated and non-isolated potato tuber periderm. Planta 154, 7680.CrossRefGoogle ScholarPubMed
Schmutz, A., Buchala, A.J. & Ryser, U. (1996). Changing the dimensions of suberin lamellae of green cotton fibers with a specific inhibitor of the endoplasmatic reticulum-associated fatty acid elongases. Plant Physiol 110, 403411.Google Scholar
Schreiber, L., Franke, R. & Hartmann, K. (2005). Wax and suberin development of native and wound periderm of potato (Solanum tuberosum L.) and its relation to peridermal transpiration. Planta 220, 520530.CrossRefGoogle ScholarPubMed
Şen, A., Miranda, I., Santos, S., Graça, J. & Pereira, H. (2010). The chemical composition of cork and phloem in the rhytidome of Quercus cerris bark. Ind Crops Prod 31, 417422.Google Scholar
Serra, O., Soler, M., Hohn, C., Sauveplane, V., Pinot, F., Franke, R., Schreiber, L., Prat, S., Molinas, M. & Figueras, M. (2009). CYP86A33-targeted silencing in potato tuber alters suberin composition, distorts suberin lamellae, and impairs the periderm's water barrier function. Plant Physiol 149, 10501060.Google Scholar
Sitte, P. (1962). Zum Feinbau der suberinschichten im flaschenkork. Protoplasma 54, 555559.Google Scholar
Soler, M., Serra, O., Molinas, M., Huguet, G., Fluch, S. & Figueras, M. (2007). A genomic approach to suberin biosynthesis and cork differentiation. Plant Physiol 144, 419431.CrossRefGoogle ScholarPubMed
Spurr, A.R. (1969). A low-viscose epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26, 3143.Google Scholar
Stobbe, H., Schmitt, U., Eckstein, D. & Dujesiefken, D. (2002). Developmental stages and fine structure of surface callus formed after debarking of living lime trees (Tilia sp.). Ann Botany 89, 773782.Google Scholar
Teixeira, R. & Pereira, H. (2009). Ultrastructural observations reveal the presence of channels between cork cell. Microsc Microanal 15, 539544.Google Scholar
Wattendorf, J. (1980). Cutinisierte und suberinisierte Zellwände: Schutzhüllen der höheren Pflanzen. Biol unserer Zeit 10, 8190.Google Scholar
Zeier, J. & Schreiber, L. (1998). Comparative investigation of primary and tertiary endodermal cell walls isolated from the roots of five monocotyledoneous species: Chemical composition in relation to fine structure. Planta 206, 349361.Google Scholar