Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-12-07T00:38:11.609Z Has data issue: false hasContentIssue false

Salmonella–Host Cell Interactions, Changes in Host Cell Architecture, and Destruction of Prostate Tumor Cells with Genetically Altered Salmonella

Published online by Cambridge University Press:  28 September 2007

Zhisheng Zhong
Affiliation:
Department of Veterinary Pathobiology, University of Missouri-Columbia, Columbia, MO 65211, USA
Robert A. Kazmierczak
Affiliation:
Cancer Research Center, Columbia, MO 65201, USA
Alison Dino
Affiliation:
Cancer Research Center, Columbia, MO 65201, USA
Rula Khreis
Affiliation:
Cancer Research Center, Columbia, MO 65201, USA
Abraham Eisenstark
Affiliation:
Cancer Research Center, Columbia, MO 65201, USA
Heide Schatten
Affiliation:
Department of Veterinary Pathobiology, University of Missouri-Columbia, Columbia, MO 65211, USA
Get access

Abstract

Increasingly, genetically modified Salmonella are being explored as a novel treatment for cancer because Salmonella preferentially replicate within tumors and destroy cancer cells without causing the septic shock that is typically associated with wild-type S. typhimurium infections. However, the mechanisms by which genetically modified Salmonella strains preferentially invade cancer cells have not yet been addressed in cellular detail. Here we present data that show S. typhimurium strains VNP20009, LT2, and CRC1674 invasion of PC-3M prostate cancer cells. S. typhimurium-infected PC-3M human prostate cancer cells were analyzed with immunofluorescence microscopy and transmission electron microscopy (TEM) at various times after inoculation. We analyzed microfilaments, microtubules, and DNA with fluorescence and immunofluorescence microscopy. 3T3 Phi-Yellow-mitochondria mouse 3T3 cells were used to study the effects of Salmonella infestation on mitochondria distribution in live cells. Our TEM results show gradual destruction of mitochondria within the PC-3M prostate cancer cells with complete loss of cristae at 8 h after inoculation. The fluorescence intensity in YFP-mitochondria-transfected mouse 3T3 cells decreased, which indicates loss of mitochondria structure. Interestingly, the nucleus does not appear affected by Salmonella within 8 h. Our data demonstrate that genetically modified S. typhimurium destroy PC-3M prostate cancer cells, perhaps by preferential destruction of mitochondria.

Type
BIOLOGICAL APPLICATIONS
Copyright
© 2007 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Altier, C. (2005). Genetic and environmental control of Salmonella invasion. J Microbiol 43, 8592.Google Scholar
Bermudes, D., Low, K.B., Pawelek, J., Feng, M., Belcourt, M., Zheng, L.M. & King, I. (2001). Tumour-selective Salmonella-based cancer therapy. Biotechnol Genet Eng Rev 18, 219233.Google Scholar
Bermudes, D., Zheng, L.M. & King, I.C. (2002). Live bacteria as anticancer agents and tumor-selective protein delivery vectors. Curr Opin Drug Discov Dev 5, 194199.Google Scholar
Bettegowda, C., Huang, X., Lin, J., Cheong, I., Kohli, M., Szabo, S.A., Zhang, X., Diaz, L.A., Jr., Velculesco, V.E., Parmigiani, G., Kinzler, K.W., Vogelstein, B. & Zhou, S. (2006). The genome and transcriptomes of the anti-tumor agent Clostridium novyi-NT. Nat Biotechnol 24, 15731580.Google Scholar
Beuzon, C.R., Méresse, S., Unsworth, K.E., Ruiz-Albert, J., Garvis, S., Waterman, S.R., Ryder, T.A., Boucrot, E. & Holden, D.W. (2000). Salmonella maintains the integrity of its intracellular vacuole through the action of SifA. EMBO J 19, 32353249.Google Scholar
Catron, D.M., Sylvester, M.D., Lange, Y., Kadekoppala, M., Jones, B.D., Monack, D.M., Falkow, S. & Haldar, K. (2002). The Salmonella-containing vacuole is a major site of intracellular cholesterol accumulation and recruits the GPI-anchored protein CD55. Cell Microbiol 4, 315328.Google Scholar
Chakrabarty, A.M. (2003). Microorganisms and cancer: Quest for a therapy. J Bacteriol 185, 26832686.Google Scholar
Coppens, I., Dunn, J.D., Romano, J.D., Pypaert, M., Zhang, H. & Boothroyd, J.C. (2006). Toxoplasma gondii sequesters lysosomes from mammalian hosts in the vacuolar space. Cell 125, 261274.Google Scholar
Dumont, A., Schroeder, N., Gorvel, J.-P. & Méresse, S. (2007). Analysis of kinesin accumulation on Salmonella-containing vacuoles. In Methods in Molecular Biology, vol. 253: Salmonella Protocols, Schatten, H. & Eisenstark, A. (Eds.), pp. 273288. Totowa, NJ: Humana Press Inc.
Eichelberg, K. & Galan, J.E. (1999). Differential regulation of Salmonella typhimurium type III secreted proteins by pathogenicity island 1 (SPI-1)-encoded transcriptional activators InvF and hilA. Infect Immun 67, 40994105.Google Scholar
Eisenstark, A., Kazmierczak, R.A., Fea, A., Khreis, R., Newman, D. & Schatten, H. (2007). Development of Salmonella strains as cancer therapy agents and testing in tumor cell lines. In Methods in Molecular Biology, vol. 253: Salmonella Protocols, Schatten, H. & Eisenstark, A. (Eds.), pp. 321353. Totowa, NJ: Humana Press Inc.
Forbes, N.S. (2006). Profile of a bacterial tumor killer. Nat Biotechnol 24, 1148411485.Google Scholar
Francis, C.L., Starnbach, M.N. & Falkow, S. (1992). Morphological and cytoskeletal changes in epithelial cells occur immediately upon interaction with Salmonella typhimurium grown under low-oxygen conditions. Mol Microbiol 6, 30773087.Google Scholar
Galan, J.E. (1996). Molecular genetic bases of Salmonella entry into host cells. Mol Microbiol 20, 263271.Google Scholar
Galán, J.E. (2001). Salmonella interactions with host cells: Type III secretion at work. Annu Rev Cell Dev Biol 17, 5386.Google Scholar
Galan, J.E. & Curtiss, R., III (1989). Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc Natl Acad Sci USA 86, 63836387.Google Scholar
Garcia-del Portillo, F. & Finlay, B.B. (1995). The varied lifestyles of intracellular pathogens within eukaryotic vacuolar compartments. Trends Microbiol 3, 373380.Google Scholar
Guignot, J., Caron, E., Beuzon, C., Bucci, C., Kagan, J., Roy, C. & Holden, D.W. (2004). Microtubule motors control membrane dynamics of Salmonella-containing vacuoles. J Cell Sci 117, 10331045.Google Scholar
Higginbotham, H., Bielas, S., Tanaka, T. & Gleeson, J.G. (2004). Transgenic mouse line with green-fluorescent protein-labeled centrin 2 allows visualization of the centrosome in living cells. Transgenic Res BW2116, 110.Google Scholar
Katayama, M., Zhong, Z-S., Lai, L., Sutovsky, P., Prather, R.S. & Schatten, H. (2006). Mitochondria distribution and microtubule organization in fertilized and cloned porcine embryos: Implications for developmental potential. Dev Biol 299, 206220.Google Scholar
Low, K.B., Ittensohn, M., Le, T., Platt, J., Sodi, S., Amoss, M., Ash, O., Carmichael, E., Chakraborty, A., Fischer, J., Lin, S.L., Luo, X., Miller, S.I., Zheng, L., King, I., Pawelek, J.M. & Bermudes, D. (1999). Lipid A mutant Salmonella with suppressed virulence and TNFalpha induction retain tumor-targeting in vivo. Nat Biotechnol 17, 3741.Google Scholar
Marsman, M., Jordens, I., Kuijl, C., Janssen, L. & Neefjes, J. (2004). Dynein-mediated vesicle transport controls intracellular Salmonella replication. Mol Biol Cell 15, 29542964.Google Scholar
Méresse, S., Steele-Mortimer, O., Finlay, B.B. & Gorvel, J.P. (1999). The rab7 GTPase controls the maturation of Salmonella typhimurium-containing vacuoles in HeLa cells. EMBO J 18, 43944403.Google Scholar
Méresse, S., Unsworth, K.E., Habermann, A., Griffiths, G., Fang, F., Martinez-Lorenzo, M.J., Waterman, S.R., Gorvel, J.P. & Holden, D.W. (2001). Remodeling of the actin cytoskeleton is essential for replication of intravacuolar Salmonella. Cell Microbiol 3, 567577.Google Scholar
Pawelek, J.M., Low, K.B. & Bermudes, D. (2003). Bacteria as tumour-targeting vectors. Lancet Oncol 4, 548556.Google Scholar
Pawelek, J.M., Sodi, S., Chakraborty, A.K., Platt, J.T., Miller, S., Holden, D.W., Hensel, M. & Low, K.B. (2002). Salmonella pathogenicity island-2 and anticancer activity in mice. Cancer Gene Ther 9, 813818.Google Scholar
Perrett, C.A. & Jepson, M.A. (2007). Applications of cell imaging in Salmonella research. In Methods in Molecular Biology, vol. 253: Salmonella Protocols, Schatten, H. & Eisenstark, A. (Eds.), pp. 235272. Totowa, NJ: Humana Press Inc.
Saltzman, D.A. (2005). Cancer immunotherapy based on the killing of Salmonella typhimurium-infected tumour cells. Expert Opin Biol Ther 5, 443449.Google Scholar
Schatten, G., Schatten, H., Spector, I., Cline, C., Paweletz, N., Simerly, C. & Petzelt, C. (1986). Latrunculin inhibits the microfilament-mediated processes during fertilization, cleavage and early development in sea urchins and mice. Exp Cell Res 166, 191208.Google Scholar
Schatten, H., Cheney, R., Balczon, R., Willard, M., Cline, C., Simerly, C. & Schatten, G. (1986). Localization of fodrin during fertilization and early development of sea urchins and mice. Dev Biol 118, 457466.Google Scholar
Schatten, H., Fea, A., Zhong, Z-S., Kazmierczak, R., Newman, D. & Eisenstark, E. (2006). Targeting of prostate tumor with genetically altered Salmonella. Microsc Microanal 12(Suppl. 2), 228229.Google Scholar
Schatten, H., Ripple, M., Balczon, R., Weindruch, R. & Taylor, M. (2000a). Androgen and taxol cause cell type specific alterations of centrosome and DNA organization in androgen-responsive LNCaP and androgen-independent prostate cancer cells. J Cell Biochem 76, 463477.Google Scholar
Schatten, H. & Ris, H. (2002). Unconventional specimen preparation techniques using high resolution low voltage field emission scanning electron microscopy to study cell motility, host cell invasion, and internal structures in Toxoplasma gondii. Microsc Microanal 8, 94103.Google Scholar
Schatten, H. & Ris, H. (2004). Three-dimensional imaging of Toxoplasma gondii—Host cell membrane interactions. Microsc Microanal 10, 580585.Google Scholar
Schatten, H., Wiedemeier, A., Taylor, M., Lubahn, D., Greenberg, M.N., Besch-Williford, C., Rosenfeld, C., Day, K. & Ripple, M. (2000b). Centrosome-centriole abnormalities are markers for abnormal cell divisions and cancer in the transgenic adenocarcinoma mouse prostate (TRAMP) model. Biol Cell 92, 331340.Google Scholar
Schlumberger, M.C. & Hardt, W.-D. (2006). Salmonella type III secretion: Pulling the host cell's strings. Curr Opin Microbiol 9, 4654.Google Scholar
Smith, A.C., Circulis, J.T., Casanova, J.E., Scidmore, M.A. & Brumell, J.H. (2005). Interaction of the Salmonella-containing vacuole with the endocytic recycling system. J Biol Chem 280, 2463424641.Google Scholar
Steele-Mortimer, O., Meresse, S., Gorvel, J.P., Toh, B.H. & Finlay, B.B. (1999). Biogenesis of Salmonella typhimurium-containing vacuoles in epithelial cells involves interactions with the early endocytic pathway. Cell Microbiol 1, 3349.Google Scholar
Sun, Q.-Y., Lai, L., Wu, G., Park, K.-W., Day, B., Prather, R.S. & Schatten, H. (2001a). Microtubule assembly after treatment of pig oocytes with taxol: Correlation with chromosomes, γ-tubulin and MAP kinase. Mol Reprod Dev 60, 481490.Google Scholar
Sun, Q.-Y., Wu, G.M., Lai, L., Park, K.W., Day, B., Prather, R.S. & Schatten, H. (2001b). Translocation of active mitochondria during pig oocyte maturation, fertilization and early embryo development in vitro. Reproduction 122, 155163.Google Scholar
Zhao, M., Yang, M., Ma, H., Li, X., Tan, X., Li, S., Yang, Z. & Hoffman, M. (2006). Targeted therapy with a Salmonella Typhimurium leucine-arginine auxotroph cures orthotopic human breast tumors in nude mice. Cancer Res 66, 76477652.Google Scholar
Zhong, Z., Katayama, M., Liu, Z.-H., Hao, Y.-H., Lai, L., Wax, D., Samuel, M., Sun, Q.-Y., Prather, R.S. & Schatten, H. (2006). Translocation of mitochondria in cloned porcine embryos. Microsc Microanal 12(Suppl. 2), 67.Google Scholar
Zhong, Z., Spate, L., Li, R., Hao, Y., Lai, L., Wax, D., Waterman, K., Sun, Q.-Y., Prather, R.S. & Schatten, H. (2007). Remodeling of centrosomes in intraspecies and interspecies nuclear transfer porcine embryos. Cell Cycle 6, 15101520.Google Scholar
Zhou, D., Mooseker, M.S. & Galan, J.E. (1999). Role of the S. typhimurium actin-binding protein SipA in bacterial internalization. Science 283, 20922095.Google Scholar