Skip to main content Accessibility help
×
Home

Multiplexed TEM Specimen Preparation and Analysis of Plasmonic Nanoparticles

Published online by Cambridge University Press:  30 July 2015


Sėan K. Mulligan
Affiliation:
The National Resource for Automated Molecular Microscopy, La Jolla, CA 92037, USA
Jeffrey A. Speir
Affiliation:
The National Resource for Automated Molecular Microscopy, La Jolla, CA 92037, USA
Ivan Razinkov
Affiliation:
The National Resource for Automated Molecular Microscopy, La Jolla, CA 92037, USA New York Structural Biology Center, New York, NY 10027, USA
Anchi Cheng
Affiliation:
The National Resource for Automated Molecular Microscopy, La Jolla, CA 92037, USA New York Structural Biology Center, New York, NY 10027, USA
John Crum
Affiliation:
The National Resource for Automated Molecular Microscopy, La Jolla, CA 92037, USA
Tilak Jain
Affiliation:
The National Resource for Automated Molecular Microscopy, La Jolla, CA 92037, USA
Erika Duggan
Affiliation:
Scintillon Institute, San Diego, CA 92121, USA
Er Liu
Affiliation:
La Jolla Bioengineering Institute, San Diego, CA 92121, USA
John P. Nolan
Affiliation:
Scintillon Institute, San Diego, CA 92121, USA
Bridget Carragher
Affiliation:
The National Resource for Automated Molecular Microscopy, La Jolla, CA 92037, USA New York Structural Biology Center, New York, NY 10027, USA
Clinton S. Potter
Affiliation:
The National Resource for Automated Molecular Microscopy, La Jolla, CA 92037, USA New York Structural Biology Center, New York, NY 10027, USA
Corresponding
E-mail address:

Abstract

We describe a system for rapidly screening hundreds of nanoparticle samples using transmission electron microscopy (TEM). The system uses a liquid handling robot to place up to 96 individual samples onto a single standard TEM grid at separate locations. The grid is then transferred into the TEM and automated software is used to acquire multiscale images of each sample. The images are then analyzed to extract metrics on the size, shape, and morphology of the nanoparticles. The system has been used to characterize plasmonically active nanomaterials.


Type
Materials Applications and Techniques
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below.

Footnotes

These authors contributed equally to this work.


References

Ali, M.R.K., Snyder, B. & El-Sayed, M.A (2012). Synthesis and optical properties of small Au nanorods using a seedless growth technique. Langmuir 28(25), 98079815.CrossRefGoogle ScholarPubMed
Alkilany, A.M., Lohse, S.E. & Murphy, C.J. (2013). The gold standard: Gold nanoparticle libraries to understand the nanobio interface. Acc Chem Res 46(3), 650661.CrossRefGoogle Scholar
Castro-Hartmann, P., Heck, G., Eltit, J.M., Fawcett, P. & Samso, M. (2013). The ArrayGrid: A methodology for applying multiple samples to a single TEM specimen grid. Ultramicroscopy 135(December), 105112.CrossRefGoogle ScholarPubMed
Cheng, A., Leung, A., Fellmann, D., Quispe, J., Suloway, C., Pulokas, J., Abeyrathne, P.D., Lam, J.S., Carragher, B. & Potter, C.S. (2007). Towards automated screening of two-dimensional crystals. J Struct Biol 160(3), 324331.CrossRefGoogle ScholarPubMed
Coudray, N., Hermann, G., Caujolle-Bert, D., Karathanou, A., Erne-Brand, F., Buessler, J.-L., Daum, P., Plitzko, J.M., Chami, M., Mueller, U., Kihl, H., Urban, J.-P., Engel, A. & Rmigy, H.-W. (2011). Automated screening of 2D crystallization trials using transmission electron microscopy: A high-throughput tool-chain for sample preparation and microscopic analysis. J Struct Biol 173(2), 365374.CrossRefGoogle ScholarPubMed
Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R. & Witten, T.A. (1997). Capillary flow as the cause of ring stains from dried liquid drops. Nature 389(October), 827829.CrossRefGoogle Scholar
Hu, M., Vink, M., Kim, C., Derr, K.D., Koss, J., D’Amico, K., Cheng, A., Pulokas, J., Ubarretxena-Belandia, I. & Stokes, D. (2010). Automated electron microscopy for evaluating two-dimensional crystallization of membrane proteins. J Struct Biol 171(1), 102110.CrossRefGoogle ScholarPubMed
Jain, T., Sheehan, P., Crum, J., Carragher, B. & Potter, C.S. (2012). Spotiton: A prototype for an integrated inkjet dispense and vitrification system for cryo-TEM. J Struct Biol 179(1), 6875.CrossRefGoogle ScholarPubMed
Kamentsky, L., Jones, T.R., Fraser, A., Bray, M.-A., Logan, D.J., Madden, K.L., Ljosa, V., Rueden, C., Eliceiri, K.W. & Carpenter, A.E. (2011). Improved structure, function, and compatibility for CellProfiler: Modular high-throughput image analysis software. Bioinformatics 27(8), 11791180.CrossRefGoogle ScholarPubMed
Krafft, C. & Popp, J. (2015). The many facets of Raman spectroscopy for biomedical analysis. Anal Bioanal Chem 407(3), 699717.CrossRefGoogle ScholarPubMed
Lohse, S.E. & Murphy, C.J. (2013). The quest for shape control: A history of gold nanorod synthesis. Chem Mater 25(8), 12501261.CrossRefGoogle Scholar
Moon, H.R., Lim, D.-W. & Suh, M.P. (2013). Fabrication of metal nanoparticles in metalorganic frameworks. Chem Soc Rev 42(4), 18071824.CrossRefGoogle Scholar
Nolan, J.P., Duggan, E. & Condello, D. (2014). Optimization of SERS tag intensity, binding footprint, and emittance. Bioconjug Chem 25(7), 12331242.CrossRefGoogle ScholarPubMed
Nolan, J.P., Duggan, E., Liu, E., Condello, D., Dave, Isha & Stoner, S.A (2012). Single cell analysis using surface enhanced Raman scattering (SERS) tags. Methods 57(3), 272279.CrossRefGoogle ScholarPubMed
Orendorff, C.J., Gearheart, L., Jana, N.R. & Murphy, C.J. (2006). Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates. Phys Chem Chem Phys 8(1), 165170.CrossRefGoogle ScholarPubMed
Potter, C.S., Chu, H., Frey, B., Green, C., Kisseberth, N., Madden, T.J., Miller, K.L., Nahrstedt, K., Pulokas, J., Reilein, A., Tcheng, D., Weber, D. & Carragher, B. (1999). Leginon: A system for fully automated acquisition of 1000 electron micrographs a day. Ultramicroscopy 77(3–4), 153161.CrossRefGoogle ScholarPubMed
Potter, C.S., Pulokas, J., Smith, P., Suloway, C. & Carragher, B. (2004). Robotic grid loading system for a transmission electron microscope. J Struct Biol 146(3), 431440.CrossRefGoogle ScholarPubMed
Rao, C.N., Ramakrishna Matte, H.S., Voggu, R. & Govindaraj, A. (2012). Recent progress in the synthesis of inorganic nanoparticles. Dalton Trans 41(17), 50895120.CrossRefGoogle ScholarPubMed
Rodriguez-Lorenzo, L., Fabris, L. & Alvarez-Puebla, R.A. (2012). Multiplex optical sensing with surface-enhanced Raman scattering: A critical review. Anal Chim Acta 745, 1023.CrossRefGoogle ScholarPubMed
Smith, D.K., Miller, N.R., Korgel, B.A. 2009). Iodide in CTAB prevents gold nanorod formation. Langmuir 25(16), 95189524.CrossRefGoogle ScholarPubMed
Striemer, C.C., Gaborski, T.R., McGrath, J.L. & Fauchet, P.M. (2007). Charge- and size-based separation of macromolecules using ultrathin silicon membranes. Nature 445(7129), 749753.CrossRefGoogle ScholarPubMed
Suloway, C., Pulokas, J., Fellmann, D., Cheng, A., Guerra, F., Quispe, J., Stagg, S., Potter, C.S., Carragher, B. (2005). Automated molecular microscopy: The new Leginon system. J Struct Biol 151(1), 4160.CrossRefGoogle ScholarPubMed
Vo-Dinh, T., Fales, A.M., Griffin, G.D., Khoury, C.G., Liu, Y., Ngo, H., Norton, S.J., Register, J.K., Wang, H.-N. & Yuan, H. (2013). Plasmonic nanoprobes: From chemical sensing to medical diagnostics and therapy. Nanoscale 5(21), 1012710140.CrossRefGoogle ScholarPubMed
Yunker, P.J., Still, T., Lohr, M.A. & Yodh, A.G. (2011). Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature 476(7360), 308311.CrossRefGoogle ScholarPubMed

Mulligan Supplementary Material

Supplementary Movie

[Opens in a new window]
Video 2 MB

Altmetric attention score


Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 11
Total number of PDF views: 73 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 5th December 2020. This data will be updated every 24 hours.

Hostname: page-component-b4dcdd7-kbvxn Total loading time: 0.271 Render date: 2020-12-05T17:33:58.609Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Sat Dec 05 2020 17:00:48 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Multiplexed TEM Specimen Preparation and Analysis of Plasmonic Nanoparticles
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Multiplexed TEM Specimen Preparation and Analysis of Plasmonic Nanoparticles
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Multiplexed TEM Specimen Preparation and Analysis of Plasmonic Nanoparticles
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *