Hostname: page-component-7bb8b95d7b-dtkg6 Total loading time: 0 Render date: 2024-09-18T11:03:13.139Z Has data issue: false hasContentIssue false

Dynamic Effects in Voltage Pulsed Atom Probe

Published online by Cambridge University Press:  12 November 2020

Loïc Rousseau*
Affiliation:
Groupe Physique des Matériaux, Université de Rouen, Saint Etienne du Rouvray, Normandie 76800, France ESIGELEC, Avenue Galilée, Saint Etienne du Rouvray, Normandie 76800, France
Antoine Normand
Affiliation:
Groupe Physique des Matériaux, Université de Rouen, Saint Etienne du Rouvray, Normandie 76800, France
Felipe F. Morgado
Affiliation:
Max-Planck Institut für Eisenforschung GmbH, Düsseldorf D-40237, Germany
Leigh Stephenson
Affiliation:
Max-Planck Institut für Eisenforschung GmbH, Düsseldorf D-40237, Germany
Baptiste Gault
Affiliation:
Max-Planck Institut für Eisenforschung GmbH, Düsseldorf D-40237, Germany Department of Material, Royal School of Mines, Imperial College, London, UK
Kambiz Tehrani
Affiliation:
ESIGELEC, Avenue Galilée, Saint Etienne du Rouvray, Normandie 76800, France
François Vurpillot
Affiliation:
Groupe Physique des Matériaux, Université de Rouen, Saint Etienne du Rouvray, Normandie 76800, France
*
*Author for correspondence: Loïc Rousseau, E-mail: loic.rousseau@univ-rouen.fr
Get access

Abstract

Atom probe tomography (APT) is particularly suited for the analysis of nanoscale microstructural features in metallic alloys. APT has become important in the quantitative assessment at high spatial resolution of light elements, which are notoriously difficult to analyze by electron- or X-ray-based techniques. These control the physical properties of high-strength materials and semiconductors. However, the mass spectrometer of state-of-the-art commercial atom probes with the highest spatial precision and detection efficiency are optimized for elements with mass-to-charge ratios corresponding to Fe and neighboring elements. Little is known on the theoretical performances for light elements. Here, we discuss the theoretical instrumental performance of one such instrument using accurate three-dimensional transient electrostatic simulations in a time-varying field approach. We compare the simulations to experimental measurements obtained on an FeBSi bulk-metallic glass. Dynamics effects during the ion's flight are revealed when examining multi-hit mass-to-charge correlations, and we demonstrate their influence on the mass resolution. The model reveals significant differences in ion projection as a function of the mass. We discuss how these chromatic aberrations affect the spatial precision. This approach shows that by tuning the shape of the voltage pulses used to trigger field evaporation, minimizing the influence of these detrimental dynamic effects is possible.

Type
Software and Instrumentation
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of the Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bémont, E, Bostel, A, Bouet, M, Da Costa, G, Chambreland, S, Deconihout, B & Hono, K (2003). Effects of incidence angles of ions on the mass resolution of an energy compensated 3D atom probe. Ultramicroscopy 95, 231238. doi:10.1016/S0304-3991(02)00321-2CrossRefGoogle ScholarPubMed
Breen, AJ, Stephenson, LT, Sun, B, Li, Y, Kasian, O, Raabe, D, Herbig, M & Gault, B (2020). Solute hydrogen and deuterium observed at the near atomic scale in high-strength steel. Acta Mater 188, 108120. doi:10.1016/j.actamat.2020.02.004CrossRefGoogle Scholar
CAMECA LEAP 5000 Atom Probe. (2020) Available at https://www.cameca.com/products/apt/leap-5000 (accessed January 27, 2020).Google Scholar
Cerezo, A, Smith, GDW & Clifton, PH (2006). Measurement of temperature rises in the femtosecond laser pulsed three-dimensional atom probe. Appl Phys Lett 88(15), 154103. doi:10.1063/1.2191412CrossRefGoogle Scholar
Chen, Y-S, Haley, D, Gerstl, SSA, London, AJ, Sweeney, F, Wepf, RA, Rainforth, WM, Bagot, PAJ & Moody, MP (2017). Direct observation of individual hydrogen atoms at trapping sites in a ferritic steel. Science 355(6330), 11961199. doi:10.1126/science.aal2418CrossRefGoogle Scholar
de Castilho, CMC (1999). Ion trajectories in atom probe field ion microscopy and gas field ion sources. J Phys D: Appl Phys 32(17), 22612265. doi:10.1088/0022-3727/32/17/317CrossRefGoogle Scholar
Deconihout, B, Saint-Martin, R, Jarnot, C & Bostel, A (2003). Improvement of the mass resolution of the atom probe using a dual counter-electrode. Ultramicroscopy 95, 239249. doi:10.1016/S0304-3991(02)00322-4CrossRefGoogle ScholarPubMed
De Geuser, F & Gault, B (2020). Metrology of small particles and solute clusters by atom probe tomography. Acta Mater 188, 406415. doi:10.1016/j.actamat.2020.02.023CrossRefGoogle Scholar
De Geuser, F, Gault, B, Bostel, A & Vurpillot, F (2007). Correlated field evaporation as seen by atom probe tomography. Surf Sci 601(2), 536543. doi:10.1016/j.susc.2006.10.019CrossRefGoogle Scholar
EIKOS (2020). Available at https://www.cameca.com/products/apt/eikos (accessed January 27, 2020).Google Scholar
Gault, B, Moody, MP, de Geuser, F, Haley, D, Stephenson, LT & Ringer, SP (2009). Origin of the spatial resolution in atom probe microscopy. Appl Phys Lett 95(3), 034103. doi:10.1063/1.3182351CrossRefGoogle Scholar
Gault, B, Moody, MP, De Geuser, F, La Fontaine, A, Stephenson, LT, Haley, D & Ringer, SP (2010 a). Spatial resolution in atom probe tomography. Microsc Microanal 16(1), 99110. doi:10.1017/S1431927609991267CrossRefGoogle ScholarPubMed
Gault, B, Müller, M, La Fontaine, A, Moody, MP, Shariq, A, Cerezo, A, Ringer, SP & Smith, GDW (2010 b). Influence of surface migration on the spatial resolution of pulsed laser atom probe tomography. J Appl Phys 108(4), 044904. doi:10.1063/1.3462399CrossRefGoogle Scholar
Gruber, M, Vurpillot, F, Bostel, A & Deconihout, B (2011). Field evaporation: A kinetic Monte Carlo approach on the influence of temperature. Surf Sci 605(23–24), 20252031. doi:10.1016/j.susc.2011.07.022CrossRefGoogle Scholar
Kelly, TF, Camus, PP, Larson, DJ, Holzman, LM & Bajikar, SS (1996). On the many advantages of local-electrode atom probes. Ultramicroscopy 62(1–2), 2942. doi:10.1016/0304-3991(95)00086-0CrossRefGoogle ScholarPubMed
Larson, DJ (2013). Local Electrode Atom Probe Tomography: A User's Guide. New York: Springer.CrossRefGoogle Scholar
Larson, DJ, Camus, PP & Kelly, TF (1996). Optimal field pulsing for atom probes with counter electrodes. Appl Surf Sci 94–95, 434441. doi:10.1016/0169-4332(95)00407-6CrossRefGoogle Scholar
Loi, ST, Gault, B, Ringer, SP, Larson, DJ & Geiser, BP (2013). Electrostatic simulations of a local electrode atom probe: The dependence of tomographic reconstruction parameters on specimen and microscope geometry. Ultramicroscopy 132, 107113. doi:10.1016/j.ultramic.2012.12.012CrossRefGoogle ScholarPubMed
Marquis, EA & Vurpillot, F (2008). Chromatic aberrations in the field evaporation behavior of small precipitates. Microsc Microanal 14(6), 561570. doi:10.1017/S1431927608080793CrossRefGoogle ScholarPubMed
Miller, MK & Forbes, RG (2014). Atom-Probe Tomography. Boston, MA: Springer US. doi:10.1007/978-1-4899-7430-3.CrossRefGoogle Scholar
Müller, EW (1951). Das Feldionenmikroskop. Z Phys 131(1), 136142. doi:10.1007/BF01329651.CrossRefGoogle Scholar
Pareige, C, Lefebvre-Ulrikson, W, Vurpillot, F & Sauvage, X (2016). Chapter five—Time-of-flight mass spectrometry and composition measurements. In Atom Probe Tomography, Lefebvre-Ulrikson, W, Vurpillot, F & Sauvage, X (Eds.), pp. 123154. Academic Press. doi:10.1016/B978-0-12-804647-0.00005-XCrossRefGoogle Scholar
Rousseau, L, Normand, A, Tehrani, K & Vurpillot, F (2020). Characterization of a high voltage and high frequency pulse generator configuration for atom probe. In 2020 IEEE 15th International Conference of System of Systems Engineering (SoSE), pp. 193–198. Budapest, Hungary: IEEE. doi:10.1109/SoSE50414.2020.9130486CrossRefGoogle Scholar
Saxey, DW (2011). Correlated ion analysis and the interpretation of atom probe mass spectra. Ultramicroscopy 111(6), 473479. doi:10.1016/j.ultramic.2010.11.021CrossRefGoogle ScholarPubMed
Southworth, HN & Walls, JM (1978). The projection geometry of the field-ion image. Surf Sci 75(1), 129140. doi:10.1016/0039-6028(78)90057-2CrossRefGoogle Scholar
Takahashi, J, Kawakami, K & Kobayashi, Y (2019). Application of atom probe tomography to fundamental issues of steel materials. Surf Interface Anal 51(1), 1216. doi:10.1002/sia.6535CrossRefGoogle Scholar
Vurpillot, F (2016). Chapter two—Field ion emission mechanisms. In Atom Probe Tomography, Lefebvre-Ulrikson, W, Vurpillot, F & Sauvage, X (Eds.), pp. 1772. Academic Press. doi:10.1016/B978-0-12-804647-0.00002-4CrossRefGoogle Scholar
Zhao, L, Normand, A, Delaroche, F, Ravelo, B & Vurpillot, F (2015). Pulse shaping optimization for improving atom probe tomography. Int J Mass Spectrom 386, 4753. doi:10.1016/j.ijms.2015.06.012CrossRefGoogle Scholar