Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-6pznq Total loading time: 0.22 Render date: 2021-03-01T07:58:07.975Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Clustering and Local Magnification Effects in Atom Probe Tomography: A Statistical Approach

Published online by Cambridge University Press:  20 September 2010

Thomas Philippe
Affiliation:
Université de Rouen, GPM, UMR CNRS 6634, BP 12, Av. de l'université, 76801 Saint Etienne du Rouvray, France
Maria Gruber
Affiliation:
Université de Rouen, GPM, UMR CNRS 6634, BP 12, Av. de l'université, 76801 Saint Etienne du Rouvray, France
François Vurpillot
Affiliation:
Université de Rouen, GPM, UMR CNRS 6634, BP 12, Av. de l'université, 76801 Saint Etienne du Rouvray, France
D. Blavette
Affiliation:
Université de Rouen, GPM, UMR CNRS 6634, BP 12, Av. de l'université, 76801 Saint Etienne du Rouvray, France Institut Universitaire de France, France
Corresponding

Abstract

Local magnification effects and trajectory overlaps related to the presence of a second phase (clusters) are key problems and still open issues in the assessment of quantitative composition data in three-dimensional atom probe tomography (APT) particularly for tiny solute-enriched clusters. A model based on the distribution of distance of first nearest neighbor atoms has been developed to exhibit the variations in the apparent atomic density in reconstructed volumes and to correct compositions that are biased by local magnification effects. This model was applied to both simulated APT reconstructions and real experimental data and shows an excellent agreement with the expected composition of clusters.

Type
Atomic Force and Atom Probe Applications
Copyright
Copyright © Microscopy Society of America 2010

Access options

Get access to the full version of this content by using one of the access options below.

References

Birdseye, P.J, Smith, D.A. & Smith, G.D.W. (1974). Analogue investigations of electric field distribution and ion trajectories in the field ion microscope. J Phys D 7, 16421651.CrossRefGoogle Scholar
Blavette, D., Bostel, A., Sarrau, J.M., Deconihout, B. & Menand, A. (1993). An atom-probe for three dimensional tomography. Nature 363, 432435.CrossRefGoogle Scholar
Blavette, D., Deconihout, B., Chambreland, S. & Bostel, A. (1998). Three-dimensional imaging of chemical order with the tomographic atom-probe. Ultramicroscopy 70, 115124.CrossRefGoogle Scholar
Blavette, D., Vurpillot, F., Pareige, P. & Menand, A. (2001). A model accounting for spatial overlaps in 3D atom-probe microscopy. Ultramicroscopy 89, 145153.CrossRefGoogle ScholarPubMed
Cerezo, A., Godfrey, T.J., Sijbrandij, S.J., Smith, G.D.W. & Warren, P.J. (1998). Performance of an energy-compensated three-dimensional atom probe. Rev Sci Instrum 69, 4958.CrossRefGoogle Scholar
Cojocaru-Miredin, O., Cadel, E., Deconihout, B., Mangelinck, D. & Blavette, D. (2009). Three-dimensional atom mapping of boron in implanted silicon. Ultramicroscopy 109, 649653.CrossRefGoogle ScholarPubMed
De Geuser, F., Lefebvre, W., Danoix, F., Vurpillot, F., Forbord, B. & Blavette, D. (2007). An improved reconstruction procedure for the correction of local magnification effects in three-dimensional atom-probe. Surf Interface Anal 39, 268272.CrossRefGoogle Scholar
Efron, B. (1982). The jackknife, the bootstrap, and other resampling plans. Society of Industrial and Applied Mathematics CBMS-NSF Monographs 38, 56.Google Scholar
Gault, B., Moody, M.P., De Geuser, F., Haley, D., Stephenson, L.T. & Ringer, S.P. (2009). Origin of the spatial resolution in atom probe microscopy. Appl Phys Lett 95, 034103.CrossRefGoogle Scholar
Gault, B., Vurpillot, F., Vella, A., Gilbert, M., Menand, A., Blavette, D. & Deconihout, B. (2006). Design of a femtosecond laser assisted tomographic atom probe. Rev Sci Instrum 77, 043705.CrossRefGoogle Scholar
Inoue, K., Yano, F., Nishida, A., Takamizawa, H., Tsunomura, T., Nagai, Y. & Hasegawa, M. (2009). Dopant distributions in n-MOSFET structure observed by atom probe tomography. Ultramicroscopy 109, 14791484.CrossRefGoogle ScholarPubMed
Kelly, T.F. & Miller, M.K. (2007). Atom probe tomography. Rev Sci Instrum 78, 031101.CrossRefGoogle ScholarPubMed
Marquis, E. & Vurpillot, F. (2008). Chromatic aberrations in the field evaporation behavior of small precipitates. Microsc Microanal 14, 561570.CrossRefGoogle ScholarPubMed
Miller, M.K. (1987). The effects of local magnification and trajectory aberrations on atom probe analysis. J Phys (Paris) Colloq 48(C6), 565570.CrossRefGoogle Scholar
Miller, M.K., Cerezo, A., Heringthon, M.G. & Smith, G.D.W. (1996). In Atom Probe Field Ion Microscopy, Miller, M.K. (Ed.), pp. 196199. Oxford, UK: Clarendon.Google Scholar
Miller, M.K. & Hetherington, M.G. (1991). Local magnification effects in the atom probe. Surf Sci 246, 442449.CrossRefGoogle Scholar
Perea, D.E., Hemesath, E.R., Schwalbach, E.J., Lensch-Falk, J.L., Voorhees, P.W. & Lauhon, L.J. (2009). Direct measurement of dopant distribution in an individual vapor-liquid-solid nanowire. Nat Nanotechnol Lett 4, 315319.CrossRefGoogle Scholar
Philippe, T., De Geuser, F., Duguay, S., Lefebvre, W., Cojocaru-Miredin, O., Da Costa, G. & Blavette, D. (2009). Clustering and nearest neighbour distances in atom-probe tomography. Ultramicroscopy 109, 13041309.CrossRefGoogle ScholarPubMed
Stephenson, L.T., Moody, M.P., Liddicoat, P.V. & Ringer, S.P. (2007). New techniques for the analysis of fine-scaled clustering phenomena within atom probe tomography data. Microsc Microanal 13, 448463.CrossRefGoogle Scholar
Thompson, K., Flaitz, P.L., Ronsheim, P., Larson, D.J. & Kelly, T.F. (2007). Imaging of arsenic Cottrell atmospheres around silicon defects by three-dimensional atom probe tomography. Science 317, 13701374.CrossRefGoogle ScholarPubMed
Vurpillot, F., Bostel, A. & Blavette, D. (2001). A new approach to the interpretation of atom probe field-ion microscopy images. Ultramicroscopy 89, 137144.CrossRefGoogle ScholarPubMed
Waugh, A.R., Boyes, E.D. & Southon, M.J. (1976). Investigation of field evaporation with a field-desorption microscope. Surf Sci 61, 109142.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 18
Total number of PDF views: 121 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 1st March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Clustering and Local Magnification Effects in Atom Probe Tomography: A Statistical Approach
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Clustering and Local Magnification Effects in Atom Probe Tomography: A Statistical Approach
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Clustering and Local Magnification Effects in Atom Probe Tomography: A Statistical Approach
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *