Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-qpj69 Total loading time: 0.325 Render date: 2021-03-04T13:57:36.592Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Atom Scale Characterization of the Near Apex Region of an Atomic Force Microscope Tip

Published online by Cambridge University Press:  30 July 2010

Christopher J. Tourek
Affiliation:
Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
Sriram Sundararajan
Affiliation:
Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
Corresponding
E-mail address:

Abstract

Three-dimensional atom probe tomography (APT) is successfully used to analyze the near-apex regions of an atomic force microscope (AFM) tip. Atom scale material structure and chemistry from APT analysis for standard silicon AFM tips and silicon AFM tips coated with a thin film of Cu is presented. Comparison of the thin film data with that observed using transmission electron microscopy indicates that APT can be reliably used to investigate the material structure and chemistry of the apex of an AFM tip at near atomic scales.

Type
Atomic Force and Atom Probe Applications
Copyright
Copyright © Microscopy Society of America 2010

Access options

Get access to the full version of this content by using one of the access options below.

References

Bas, P., Bostel, A., Deconihout, B. & Blavette, D. (1995). A general protocol for the reconstruction of 3D atom-probe data. Appl Surf Sci 87/88, 298304.CrossRefGoogle Scholar
Berger, R., Butt, H.J., Retschke, M.B. & Weber, S.A.L. (2009). Electrical modes in scanning probe microscopy. Macromol Rapid Comm 30(14), 11671178.CrossRefGoogle ScholarPubMed
Bhushan, B., Israelachvili, J.N. & Landman, U. (1995). Nanotribology—Friction, wear and lubrication at the atomic-scale. Nature 374(6523), 607616.CrossRefGoogle Scholar
Butt, H.J., Cappella, B. & Kappl, M. (2005). Force measurements with the atomic force microscope: Technique, interpretation and applications. Surf Sci Rep 59(1–6), 1152.CrossRefGoogle Scholar
Bykov, V., Gologanov, A. & Shevyakov, V. (1998). Test structure for SPM tip shape deconvolution. Appl Phys A 66(5), 499502.CrossRefGoogle Scholar
Carpick, R.W. & Salmeron, M. (1997). Scratching the surface: Fundamental investigations of tribology with atomic force microscopy. Chem Rev 97(4), 11631194.CrossRefGoogle ScholarPubMed
Cheung, C.L., Hafner, J.H. & Lieber, C.M. (2000). Carbon nanotube atomic force microscopy tips: Direct growth by chemical vapor deposition and application to high-resolution imaging. P Natl Acad Sci USA 97(8), 38093813.CrossRefGoogle ScholarPubMed
Chung, K.H. & Kim, D.E. (2007). Wear characteristics of diamond-coated atomic force microscope probe. Ultramicroscopy 108(1), 110.CrossRefGoogle ScholarPubMed
Cojocaru-Miredin, O., Cadel, E., Vurpillot, F., Mangelinck, D. & Blavette, D. (2009). Three-dimensional atomic-scale imaging of boron clusters in implanted silicon. Scripta Mater 60(5), 285288.CrossRefGoogle Scholar
Danoix, F. & Auger, P. (2000). Atom probe studies of the Fe-Cr system and stainless steels aged at intermediate temperature: A review. Mater Charac 44(1–2), 177201.CrossRefGoogle Scholar
Fujisawa, S. & Kizuka, T. (2003). Lateral displacement of an AFM tip observed by in-situ TEM/AFM combined microscopy: The effect of the friction in AFM. Tribol Lett 15(2), 163168.CrossRefGoogle Scholar
Gewirth, A.A. & Niece, B.K. (1997). Electrochemical applications of in situ scanning probe microscopy. Chem Rev 97(4), 11291162.CrossRefGoogle ScholarPubMed
Giancarlo, L.C. & Flynn, G.W. (1998). Scanning tunneling and atomic force microscopy probes of self-assembled, physisorbed monolayers: Peeking at the peaks. Ann Rev Phys Chem 49, 297336.CrossRefGoogle ScholarPubMed
Gopalan, R., Ping, D.H., Hono, K., Huang, M.Q., Smith, B.R., Chen, Z. & Ma, B.M. (2004). Microstructure and magnetic properties of melt-spun Sm(Co0.58Fe0.31Cu0.04Zr0.05B0.02)(z) ribbons. J Appl Phys 95(9), 49624967.CrossRefGoogle Scholar
Gorman, B.P., Norman, A.G. & Yan, Y. (2007). Atom probe analysis of III-V and Si-based semiconductor photovoltaic structures. Microsc Microanal 13, 493502.CrossRefGoogle ScholarPubMed
Greene, M.E., Kinser, C.R., Kramer, D.E., Pingree, L.S.C. & Hersam, M.C. (2004). Application of scanning probe microscopy to the characterization and fabrication of hybrid nanomaterials. Microsc Res Tech 64(5–6), 415434.CrossRefGoogle ScholarPubMed
Grogger, W., Schaffer, B., Krishnan, K.M. & Hofer, F. (2003). Energy-filtering TEM at high magnification: Spatial resolution and detection limits. Ultramicroscopy 96(3–4), 481489.CrossRefGoogle ScholarPubMed
Gruverman, A. & Kholkin, A. (2006). Nanoscale ferroelectrics: Processing, characterization and future trends. Rep Prog Phys 69(8), 24432474.CrossRefGoogle Scholar
Hansma, H.G. & Pietrasanta, L. (1998). Atomic force microscopy and other scanning probe microscopies. Curr Opin Chem Biol 2(5), 579584.CrossRefGoogle ScholarPubMed
Hartmann, U. (1999). Magnetic force microscopy. Ann Rev Mater Sci 29, 5387.CrossRefGoogle Scholar
Holmberg, K., Ronkainen, H. & Matthews, A. (2000). Tribology of thin coatings. Ceram Int 26(7), 787795.CrossRefGoogle Scholar
Hono, K. (2002). Nanoscale microstructural analysis of metallic materials by atom probe field ion microscopy. Prog Mater Sci 47(6), 621729.CrossRefGoogle Scholar
Hono, K. & Ping, D.H. (2000). Atom probe studies of nanocrystallization of amorphous alloys. Mater Charac 44(1–2), 203217.CrossRefGoogle Scholar
Horber, J.K.H. & Miles, M.J. (2003). Scanning probe evolution in biology. Science 302(5647), 10021005.CrossRefGoogle ScholarPubMed
Kalinin, S.V., Rodriguez, B.J., Jesse, S., Karapetian, E., Mirman, B., Eliseev, E.A. & Morozovska, A.N. (2007). Nanoscale electromechanics of ferroelectric and biological systems: A new dimension in scanning probe microscopy. Ann Rev Mater Res 37, 189238.CrossRefGoogle Scholar
Karuppiah, K.S.K., Bruck, A.L. & Sundararajan, S. (2009a). Evaluation of friction behavior and its contact-area dependence at the micro- and nano-scales. Tribol Lett 36(3), 259267.CrossRefGoogle Scholar
Karuppiah, K.S.K., Zhou, Y.B., Woo, L.K. & Sundararajan, S. (2009b). Nanoscale friction switches: Friction modulation of monomolecular assemblies using external electric fields. Langmuir 25(20), 1211412119.CrossRefGoogle ScholarPubMed
Kelly, T.F., Larson, D.J., Thompson, K., Alvis, R.L., Bunton, J.H., Olson, J.D. & Gorman, B.P. (2007). Atom probe tomography of electronic materials. Ann Rev Mater Res 37, 681727.CrossRefGoogle Scholar
Kelly, T.F. & Miller, M.K. (2007). Invited review article: Atom probe tomography. Rev Sci Instrum 78(3), 20.CrossRefGoogle ScholarPubMed
Kronik, L. & Shapira, Y. (1999). Surface photovoltage phenomena: Theory, experiment, and applications. Surf Sci Rep 37(1–5), 1206.CrossRefGoogle Scholar
Larson, D.J., Martens, R.L., Kelly, T.F., Miller, M.K. & Tabat, N. (1999). Atom probe analysis of planar multilayer structures. Proceedings of the 44th Annual Conference on Magnetism and Magnetic Materials, San Jose, California, pp. 59895991. College Park, MD: American Institute of Physics.Google Scholar
Larson, D.J., Wissman, B.D., Martens, R.L., Viellieux, R.J., Kelly, T.F., Gribb, T.T., Erskine, H.F. & Tabat, N. (2001). Advances in atom probe specimen fabrication from planar multilayer thin film structures. Microsc Microanal 7(1), 2431.Google ScholarPubMed
Lillehei, P.T. & Bottomley, L.A. (2000). Scanning probe microscopy. Anal Chem 72(12), 189R196R.CrossRefGoogle ScholarPubMed
Loos, J. (2005). The art of SPM: Scanning probe microscopy in materials science. Adv Mater 17(15), 18211833.CrossRefGoogle Scholar
Magonov, S.N. & Reneker, D.H. (1997). Characterization of polymer surfaces with atomic force microscopy. Ann Rev Mater Sci 27, 175222.CrossRefGoogle Scholar
Martinez, J., Yuzvinsky, T.D., Fennimore, A.M., Zettl, A., Garcia, R. & Bustamante, C. (2005). Length control and sharpening of atomic force microscope carbon nanotube tips assisted by an electron beam. Nanotechnology 16(11), 24932496.CrossRefGoogle Scholar
Mayama, N., Yamashita, C., Kaito, T., Nojima, M. & Owari, M. (2007). Stress of needle specimen on the three-dimensional atom probe (3DAP). Proceedings of the 6th International Symposium on Atomic Level Characterization for New Materials and Devices, Kanazawa, Japan, pp. 16101613. Chichester, UK: John Wiley & Sons Ltd.Google Scholar
Miller, M.K. (2000). Atom Probe Tomography Analysis at the Atomic Level. New York: Kluwer Academic/Plenum Publishers.CrossRefGoogle Scholar
Miller, M.K. (2001). Interface analysis with the three-dimensional atom probe. Surf Interf Anal 31(7), 593598.CrossRefGoogle Scholar
Miller, M.K., Cerezo, A., Hetherington, M.G. & Smith, G.D.W. (1996). Atom Probe Field Ion Microscopy. Oxford, UK: Oxford University Press.Google Scholar
Miller, M.K. & Russell, K.F. (2007). Performance of a local electrode atom probe. Surf Interf Anal 39(2–3), 262267.CrossRefGoogle Scholar
Miller, M.K., Russell, K.F. & Thompson, G.B. (2005). Strategies for fabricating atom probe specimens with a dual beam FIB. Ultramicroscopy 102(4), 287298.CrossRefGoogle ScholarPubMed
Muller, D.J. & Dufrene, Y.F. (2008). Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat Nanotechnol 3(5), 261269.CrossRefGoogle ScholarPubMed
Muller, E.W. & Bahadur, K. (1956). Field ionization of gases at a metal surface and the resolution of the field ion microscope. Phys Rev 102(3), 624631.CrossRefGoogle Scholar
Nicholls, M.A., Do, T., Norton, P.R., Kasrai, M. & Bancroft, G.M. (2005). Review of the lubrication of metallic surfaces by zinc dialkyl-dithlophosphates. Tribol Int 38(1), 1539.CrossRefGoogle Scholar
Oesterschulze, E. (2001). Recent developments of probes for scanning probe microscopy. In Advances in Imaging and Electron Physics, 118, Mulvey, T. (Ed.), pp. 129206. San Diego, CA: Academic Press.Google Scholar
Perea, D.E., Wijaya, E., Lensch-Falk, J.L., Hemesath, E.R. & Lauhon, L.J. (2008). Tomographic analysis of dilute impurities in semiconductor nanostructures. J Solid State Chem 181(7), 16421649.CrossRefGoogle Scholar
Poggi, M.A., Gadsby, E.D., Bottomley, L.A., King, W.P., Oroudjev, E. & Hansma, H. (2004). Scanning probe microscopy. Anal Chem 76(12), 34293443.CrossRefGoogle ScholarPubMed
Sader, J.E., Chon, J.W.M. & Mulvaney, P. (1999). Calibration of rectangular atomic force microscope cantilevers. Rev Sci Instrum 70(10), 39673969.CrossRefGoogle Scholar
Samori, P. (2004). Scanning probe microscopies beyond imaging. J Mater Chem 14(9), 13531366.CrossRefGoogle Scholar
Sanchez, C.G., Lozovoi, A.Y. & Alavi, A. (2004). Field-evaporation from first-principles. Mol Phys 102(9–10), 10451055.CrossRefGoogle Scholar
Santos, N.C. & Castanho, M. (2004). An overview of the biophysical applications of atomic force microscopy. Biophys Chem 107(2), 133149.CrossRefGoogle ScholarPubMed
Seidman, D.N. (2007). Three-dimensional atom-probe tomography: Advances and applications. Ann Rev Mater Res 37, 127158.CrossRefGoogle Scholar
Stender, P., Heil, T., Kohl, H. & Schmitz, G. (2009). Quantitative comparison of energy-filtering transmission electron microscopy and atom probe tomography. Ultramicroscopy 109(5), 612618.CrossRefGoogle ScholarPubMed
Tanaka, K., Yoshimura, M. & Ueda, K. (2009). High-resolution magnetic force microscopy using carbon nanotube probes fabricated directly by microwave plasma-enhanced chemical vapor deposition. J Nanomater 147204.CrossRefGoogle Scholar
Thompson, G.B., Miller, M.K. & Fraser, H.L. (2004). Some aspects of atom probe specimen preparation and analysis of thin film materials. Ultramicroscopy 100(1–2), 2534.CrossRefGoogle ScholarPubMed
Thompson, K., Larson, D.J., Ulfig, R.M., Bunton, J.H. & Kelly, T.F. (2006). Analyzing Si-based structures in 3D with a laser-pulsed local electrode atom probe. Solid State Technol 49(6), 6572.Google Scholar
Thompson, K., Sebastian, J. & Gerstl, S. (2007). Observations of Si field evaporation. Ultramicroscopy 107(2–3), 124130.CrossRefGoogle ScholarPubMed
Villarrubia, J.S. (1997). Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation. J Res NIST 102(4), 425454.CrossRefGoogle ScholarPubMed
Vurpillot, F., Bostel, A., Menand, A. & Blavette, D. (1999). Trajectories of field emitted ions in 3D atom-probe. Eur Phys J-Appl Phys 6(2), 217221.CrossRefGoogle Scholar
Wade, L.A., Shapiro, I.R., Ma, Z.Y., Quake, S.R. & Collier, C.P. (2004). Correlating AFM probe morphology to image resolution for single-wall carbon nanotube tips. Nano Lett 4(4), 725731.CrossRefGoogle Scholar
Williams, P.M., Shakesheff, K.M., Davies, M.C., Jackson, D.E., Roberts, C.J. & Tendler, S.J.B. (1996). Blind reconstruction of scanning probe image data. J Vacuum Sci Technol B 14(2), 15571562.CrossRefGoogle Scholar
Wouters, D. & Schubert, U.S. (2004). Nanolithography and nanochemistry: Probe-related patterning techniques and chemical modification for nanometer-sized devices. Angew Chem Int Edit 43(19), 24802495.CrossRefGoogle ScholarPubMed
Xie, X.N., Chung, H.J., Sow, C.H. & Wee, A.T.S. (2006). Nanoscale materials patterning and engineering by atomic force microscopy nanolithography. Mater Sci Eng R 54(1–2), 148.CrossRefGoogle Scholar
Zhou, X.W., Wadley, H.N.G., Johnson, R.A., Larson, D.J., Tabat, N., Cerezo, A., Petford-Long, A.K., Smith, G.D.W., Clifton, P.H., Martens, R.L. & Kelly, T.F. (2001). Atomic scale structure of sputtered metal multilayers. Acta Mater 49(19), 40054015.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 5
Total number of PDF views: 27 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 4th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Atom Scale Characterization of the Near Apex Region of an Atomic Force Microscope Tip
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Atom Scale Characterization of the Near Apex Region of an Atomic Force Microscope Tip
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Atom Scale Characterization of the Near Apex Region of an Atomic Force Microscope Tip
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *