Skip to main content Accessibility help
Hostname: page-component-7ccbd9845f-hcslb Total loading time: 0.592 Render date: 2023-01-31T05:03:35.499Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Atom Probe Microscopy of Strengthening Effects in Alloy 718

Published online by Cambridge University Press:  04 February 2019

Felix Theska
School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
Simon Peter Ringer
Australian Centre for Microscopy & Microanalysis, and School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, New South Wales, 2006, Australia
Sophie Primig*
School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
*Author for correspondence: Sophie Primig, E-mail:
Get access


Polycrystalline Ni-based superalloys for aerospace and power generation applications are often precipitation hardened to achieve strengthening at elevated temperatures. Here, atom probe microscopy has become an essential tool to study the complex morphology of nanoscale precipitates. This study focuses on Alloy 718, which is hardened by semi-coherent, ordered γ′ (Ni3(Al, Ti)) and γ″ (Ni3(Nb)) particles. According to previous research, these particles often occur as duplets or triplets with a stacking sequence dependent on prior processing. This creates various interfaces with a strong impact on the mechanical properties, highlighting the importance of quantitative studies which are challenging with electron microscopy. We present atom probe data reconstruction and analysis approaches particularly suited for precipitation hardened superalloys. While voltage atom probe allows for an accurate reconstruction, the acquired data volume is often limited. Laser-assisted atom probe provides statistically significant data, but the loss of crystallographic information requires correlation with voltage-mode datasets. We further describe an advanced iso-surface method where initially arbitrarily chosen concentration thresholds of Al + Ti for γ′ and Nb for γ″ particles are optimized. Recognizing the importance of the precipitate stacking order, the different types of precipitate interfaces are quantified, and these methods may be applicable to other engineering alloys.

Materials Science: Metals
Copyright © Microscopy Society of America 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Alam, T, Chaturvedi, M, Ringer, SP & Cairney, JM (2010). Precipitation and clustering in the early stages of ageing in Inconel 718. Mater Sci Eng A 527, 77707774. Scholar
Araullo-Peters, VJ, Breen, A, Ceguerra, AV, Gault, B, Ringer, SP & Cairney, JM (2015). A new systematic framework for crystallographic analysis of atom probe data. Ultramicroscopy 154, 714. ScholarPubMed
Arslan, I, Marquis, EA, Homer, M, Hekmaty, MA & Bartelt, NC (2008). Towards better 3-D reconstructions by combining electron tomography and atom-probe tomography. Ultramicroscopy 108, 15791585.CrossRefGoogle ScholarPubMed
Bagot, PAJ, Silk, OBW, Douglas, JO, Pedrazzini, S, Crudden, DJ, Martin, TL, Hardy, MC, Moody, MP & Reed, RC (2017). An atom probe tomography study of site preference and partitioning in a nickel-based superalloy. Acta Mater 125, 156165. Scholar
Blavette, D, Cadel, E & Deconihout, B (2000). The role of the atom probe in the study of nickel-based superalloys. Mater Charact 44, 133157.CrossRefGoogle Scholar
Breen, AJ, Babinsky, K, Day, AC, Eder, K, Oakman, CJ, Trimby, PW, Primig, S, Cairney, JM & Ringer, SP (2017). Correlating atom probe crystallographic measurements with transmission Kikuchi diffraction data. Microsc Microanal 23, 279290. ScholarPubMed
Breen, AJ, Moody, MP, Ceguerra, AV, Gault, B, Araullo-Peters, VJ & Ringer, SP (2015). Restoring the lattice of Si-based atom probe reconstructions for enhanced information on dopant positioning. Ultramicroscopy 159, 314323.CrossRefGoogle ScholarPubMed
Cairney, JM, Rajan, K, Haley, D, Gault, B, Bagot, PAJ, Choi, P-P, Felfer, PJ, Ringer, SP, Marceau, RKW & Moody, MP (2015). Mining information from atom probe data. Ultramicroscopy 159, 324337. ScholarPubMed
Campbell, FC (2006). Superalloys. In Manufacturing Technology for Aerospace Structural Materials, pp. 211272. Elsevier. Scholar
Cao, W-D & Kennedy, R (2004). Role of chemistry in 718-type alloys—Allvac® 718Plus™ alloy development. Superalloys 3, 9199.CrossRefGoogle Scholar
Cozar, R & Pineau, A (1973). Morphology of y′ and y″ precipitates and thermal stability of Inconel 718 type alloys. Metall Trans 4, 4759. Scholar
De Geuser, F & Gault, B (2016). Reflections on the projection of ions in atom probe tomography. Microsc Microanal 19. Scholar
Detor, AJ, DiDomizio, R, Sharghi-Moshtaghin, R, Zhou, N, Shi, R, Wang, Y, McAllister, DP & Mills, MJ (2018). Enabling large superalloy parts using compact coprecipitation of γ′ and γ″. Metall Mater Trans A 49A, 708717.CrossRefGoogle Scholar
Devaraj, A, Kaspar, TC, Ramanan, S, Walvekar, S, Bowden, ME, Shutthanandan, V & Kurtz, RJ (2014). Nanoscale phase separation in epitaxial Cr–Mo and Cr–V alloy thin films studied using atom probe tomography: Comparison of experiments and simulation. J Appl Phys 116, 193512. Scholar
Diercks, DR, Gorman, BP & Mulders, JJL (2017). Electron beam-induced deposition for atom probe tomography specimen capping layers. Microsc Microanal 23, 321328.CrossRefGoogle ScholarPubMed
Dongmo, P., Hartshorne, M., Cristiani, T., Jablonski, M. L., Bomberger, C., Isheim, D., Seidman, D. N., Taheri, M. L. & Zide, J. (2014). Observation of self-assembled core–shell structures in epitaxially embedded TbErAs nanoparticles. Small 10, 49204925. ScholarPubMed
Drexler, A., Oberwinkler, B., Primig, S., Turk, C., Povoden-Karadeniz, E., Heinemann, A., Ecker, W. & Stockinger, M. (2018). Experimental and numerical investigations of the γ″ and γ′ precipitation kinetics in Alloy 718. Mater Sci Eng A 723, 314323. Scholar
Fayman, YC (1987). Microstructural characterization and elemental partitioning in a direct-aged superalloy (DA 718). Mater Sci Eng 92, 159171.CrossRefGoogle Scholar
Gault, B, Moody, MP, Cairney, JM & Ringer, SP (2012a). Atom Probe Microscopy. New York, NY: Springer New York Scholar
Gault, B, Moody, MP, Cairney, JM & Ringer, SP (2012b). Atom probe crystallography. Mater Today 15, 378386. Scholar
Gault, B, Müller, M, La Fontaine, A, Moody, MP, Shariq, A, Cerezo, A, Ringer, SP & Smith, GDW (2010). Influence of surface migration on the spatial resolution of pulsed laser atom probe tomography. J Appl Phys 108, 044904.CrossRefGoogle Scholar
Geng, WT, Ping, DH, Gu, YF, Cui, CY & Harada, H (2007). Stability of nanoscale co-precipitates in a superalloy: A combined first-principles and atom probe tomography study. Phys Rev B - Condensed Matter Mater Phys 76, 110.Google Scholar
Han, Y, Deb, P & Chaturvedi, MC (1982). Coarsening behaviour of γ″- and γ′-particles in Inconel alloy 718. Met Sci 16, 555562. Scholar
Hellman, O, Vandenbroucke, J, Blatz Du Rivage, J & Seidman, DN (2002). Application software for data analysis for three-dimensional atom probe microscopy. Mater Sci Eng A 327, 2933.CrossRefGoogle Scholar
Hellman, OC, Vandenbroucke, JA, Rüsing, J, Isheim, D & Seidman, DN (2000). Analysis of three-dimensional atom-probe data by the proximity histogram. Microsc Microanal 6, 437444.CrossRefGoogle ScholarPubMed
Hornbuckle, BC, Kapoor, M & Thompson, GB (2015). A procedure to create isoconcentration surfaces in low-chemical-partitioning, high-solute alloys. Ultramicroscopy 159, 346353.CrossRefGoogle ScholarPubMed
Jiang, S, Wang, H, Wu, Y, Liu, X, Chen, H, Yao, M, Gault, B, Ponge, D, Raabe, D, Hirata, A, Chen, M, Wang, Y & Lu, Z (2017). Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation. Nature 544, 460464. ScholarPubMed
Jiao, ZB, Luan, JH, Guo, W, Poplawsky, JD & Liu, CT (2017). Atom-probe study of Cu and NiAl nanoscale precipitation and interfacial segregation in a nanoparticle-strengthened steel. Mater Res Lett 5, 562568. Scholar
Krueger, DD (1989). The development of direct age 718 for gas turbine engine disk applications. In Superalloys 718 Metallurgy and Applications (1989), pp. 279296. TMS Scholar
Larson, DJ, Gault, B, Geiser, BP, De Geuser, F & Vurpillot, F (2013). Atom probe tomography spatial reconstruction: Status and directions. Curr Opin Solid State Mater Sci 17, 236247. Scholar
Marceau, RKW, Ceguerra, AV, Breen, AJ, Raabe, D & Ringer, SP (2015). Quantitative chemical-structure evaluation using atom probe tomography: Short-range order analysis of Fe–Al. Ultramicroscopy 157, 1220.CrossRefGoogle ScholarPubMed
Marquis, EA & Hyde, JM (2010). Applications of atom-probe tomography to the characterisation of solute behaviours. Mater Sci Eng R: Reports R69, 3762.CrossRefGoogle Scholar
McAllister, D, Lv, D, Deutchman, H, Peterson, B, Wang, Y & Mills, MJ (2016). Characterization and modeling of deformation mechanisms in Ni-base superalloy 718. In Superalloys, 821829. Hoboken, NJ, USA.Google Scholar
Miller, MK (2000). Atom Probe Tomography: Analysis at the Atomic Level. New York: Kluwer Academic.CrossRefGoogle Scholar
Miller, MK (2001). Contributions of atom probe tomography to the understanding of nickel-based superalloys. Micron 32, 757764. Scholar
Miller, MK, Babu, SS & Burke, MG (1999). Intragranular precipitation in alloy 718. Mater Sci Eng: A 270, 1418. Scholar
Miller, MK & Forbes, RG (2014). Atom-probe tomography: The local electrode atom probe Boston, MA: Springer US. Scholar
Moody, MP, Gault, B, Stephenson, LT, Haley, D & Ringer, SP (2009). Qualification of the tomographic reconstruction in atom probe by advanced spatial distribution map techniques. Ultramicroscopy 109, 815824.CrossRefGoogle ScholarPubMed
Moody, MP, Stephenson, LT, Ceguerra, AV & Ringer, SP (2008). Quantitative binomial distribution analyses of nanoscale like-solute atom clustering and segregation in atom probe tomography data. Microsc Res Technol 71, 542550. ScholarPubMed
Oberwinkler, B, Fischersworring-Bunk, A, Huller, M & Stockinger, M (2016). Integrated Process Modeling for the Mechanical Properties Optimization of Superalloys 2016: 13th International Symposium 513–522.CrossRefGoogle Scholar
Oblak, JM, Paulonis, DF & Duvall, DS (1974). Coherency strengthening in Ni base alloys hardened by DO22 Gamma Double Prime precipitates. Metallurgical Trans 5, 143153.Google Scholar
Pollock, TM & Tin, S (2006). Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure and properties. J Propul Power 22, 361374. Scholar
Reed, RC (2006). The Superalloys Fundamentals and Applications. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Schneider, CA, Rasband, WS & Eliceiri, KW (2012). NIH image to ImageJ: 25 years of image analysis. Nat Methods 9, 671675. ScholarPubMed
Sha, G & Ringer, SP (2009). Effect of laser pulsing on the composition measurement of an Al–Mg–Si–Cu alloy using three-dimensional atom probe. Ultramicroscopy 109, 580584.CrossRefGoogle ScholarPubMed
Slama, C & Abdellaoui, M (2000). Structural characterization of the aged Inconel 718. J Alloys Compd 306, 277284. Scholar
Snedecor, GWA & Cochran, WGA (1989). Statistical Methods. 8th ed. Iowa State University Press Scholar
Strondl, A, Fischer, R, Frommeyer, G & Schneider, A (2008). Investigations of MX and γ′/γ″ precipitates in the nickel-based superalloy 718 produced by electron beam melting. Mater Sci Eng: A 480, 138147. Scholar
Theska, F, Stanojevic, A, Oberwinkler, B, Ringer, SP & Primig, S (2018). On conventional versus direct ageing of Alloy 718. Acta Mater 156, 116124. Scholar
Viskari, L & Stiller, K (2011). Atom probe tomography of Ni-base superalloys Allvac 718Plus and Alloy 718. Ultramicroscopy 111, 652658.CrossRefGoogle ScholarPubMed
Vurpillot, F, Bostel, A & Blavette, D (1999). The shape of field emitters and the ion trajectories in three- dimensional atom probes. J Microsc 196, 332336.CrossRefGoogle ScholarPubMed
Wallace, ND, Ceguerra, AV, Breen, AJ & Ringer, SP (2018). On the retrieval of crystallographic information from atom probe microscopy data via signal mapping from the detector coordinate space. Ultramicroscopy 189, 6575.CrossRefGoogle ScholarPubMed
Whitmore, L, Leitner, H, Povoden-Karadeniz, E, Radis, R & Stockinger, M (2012). Transmission electron microscopy of single and double aged 718Plus superalloy. Mater Sci Eng: A 534, 413423. Scholar
Zickler, GA, Schnitzer, R, Radis, R, Hochfellner, R, Schweins, R, Stockinger, M & Leitner, H (2009). Microstructure and mechanical properties of the superalloy ATI Allvac® 718Plus™. Mater Sci Eng: A 523, 295303. Scholar
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Atom Probe Microscopy of Strengthening Effects in Alloy 718
Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Atom Probe Microscopy of Strengthening Effects in Alloy 718
Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Atom Probe Microscopy of Strengthening Effects in Alloy 718
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *