Skip to main content Accessibility help

Thermodynamics of vitreous transition

  • R.F. Tournier (a1)


The maximum value at equilibrium of the relaxed enthalpy of some glasses is viewed as a linear function of the annealing temperature from the Kauzmann temperature TK up to a vitreous transition temperature T*g which is not time dependent. The frozen enthalpy and entropy at T*g are determined from the specific heat difference between glass and undercooled melt which is constant between TK and T*g. The Gibbs free energy change at T*g is equal to zero. The vitreous transition is a thermodynamic transition without latent heat. A model is used to describe this phenomenon. A volume energy saving εv equivalent to a complementary Laplace pressure has been added to the classical Gibbs free energy change for a crystal formation in a melt. There is a change of the Vogel–Fulcher–Tammann (VFT) temperature at T*g corresponding to a decrease of the free volume disappearance temperature. Scaling laws linking the crystal homogeneous nucleation temperatures to T*g are used to predict the two VFT temperatures, the thermodynamic vitreous transition induced by vitreous (super)-clusters and the frozen enthalpy and entropy at T*g only knowing T*g, the melting temperature Tm and the fusion heat ΔHm of any fragile glass-forming melt.



Hide All
[1] Cernosek, Z., Holubova, J., Cernoskova, E., Liska, M.J., J. Optoel. Adv. Mater. 4 (2002) 489-503
[2] Merzlyakov, M., Schick, C., Thermoch. Acta 380 (2001) 5-12
[3] Berton, A., Chaussy, J., Odin, J., Rammal, R., Tournier, R., J. Phys. Lett. 43 (1982) L153-L158
[4] Tournier, R.F., Materials 4 (2011) 869-892
[5] Berthier, L., Biroli, G., Bouchaud, J., Cipelletti, L., Masri, D.E., L’Hôte, D., Ladieu, F., Pierno, M., Science 310 (2005) 1797-1800
[6] Tanaka, H., Awasaki, T., Shintani, H., Watanabe, K., Nature Mater. 9 (2010) 324-331
[7] D.T. Wu, L. Granasy, F. Spaepen, MRS Bulletin, 2004; 945-950,
[8] I. Gutzov, J. Schmeltzer, The vitreous state, Springer-Verlag: Berlin Germany, 1995, p. 231
[9] R.F. Tournier, Thermodynamic and kinetic origin of vitreous transition, Proc. of BMG 8, to be published in Intermetallics
[10] Evenson, Z., Busch, R., Acta Mater. 59 (2011) 4404-4415
[11] Mei, J.N., Soubeyroux, J.L., Blandin, J.J., Li, J.S., Kou, H.C., Fu, H.Z., Zhou, L., J. Non-Cryst. Sol. 357 (2011) 110-115
[12] Lu, I.R., Wilde, G., Görler, G.P., Willnecker, R., J. Non-Cryst. Sol. 250-252 (1999) 577-581
[13] Mehl, P.M., Thermochem. Acta 272 (1996) 201-209
[14] Fransson, A., Bäckström, G., Int. J. Thermophys. 8 (1987) 351-362
[15] Zhang, Y., Hahn, H., J. Non-Cryst. Sol. 355 (2009) 2616-2621
[16] Gallino, I., Shah, M.B., Busch, R., Acta Mater. 55 (2007) 1367-1376
[17] H.B. Ke, P. Wen, W.H. Wang, Origin of the excess specific heat in metallic glass forming melts, preprint, 2011
[18] Busch, R., Masuhr, A., Johnson, W.L., Mater. Sc. Eng. A304-306 (2001) 97-102
[19] Angell, C.A., Rao, K.J., J. Chem. Phys. 57 (1971) 470-481
[20] Tournier, R.F., Physica. B 392 (2007) 79-93
[21] Tournier, R.F., Sci. Technol. Adv. Mater. 10 (2009) 014607:1-014607:12
[22] Tournier, R.F., J. Phys. Confer. Ser. 144 (2009) 012116:1-012116:4
[23] Vinod, C.P., Kulkarni, G.U., Rao, C.N.R., Chem. Phys. Lett. 389 (1998) 329-333
[24] de Heer, W.A., Rev. Mod. Phys. 65 (1993) 611-676
[25] Jiang, Q., Zhang, Z., Li, J.C., Acta Mater. 48 (2000) 4791-4795
[26] R.F. Tournier, Expected properties of gold melt containing intrinsic nuclei, Proc. 6th Intern. Conf. Electrom. Process. Mat., EPM 2009, Ed: Forschungszentrum Dresden-Rossendorf, Germany, 2009, pp. 304-307
[27] R.F. Tournier, Nucleation of crystallization in titanium and vitreous state in glass-forming melt, Proc. 12th World Conf. Ti 2011, to be published
[28] Herminghaus, S., Jacobs, K., Seemann, R., Eur. Phys. J. E 5 (2001) 531-538
[29] Schroers, J., Acta Mater. 56 (2008) 471-478
[30] Henderson, D.W., Ast, D.G., J. Non-Cryst. Sol. 64 (1984) 43-70
[31] Birge, N.O., Phys. Rev. B. 34 (1986) 1631-1642
[32] Liu, R.-S., Liu, H.-R., Dong, K.-J., Hou, Z.-Y., Tian, Z.-A., Peng, P., Yu, A.-B., J. Non-Cryst. Sol. 355 (2009) 541-547
[33] Almyras, G.A., Lekka, Ch.E., Mattern, N., Evangelakis, G.A., Scripta Mater. 62 (2010) 33-36


Thermodynamics of vitreous transition

  • R.F. Tournier (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed