Skip to main content Accessibility help

Prove of hydrogen formation through direct potential measurements in the rolling slit during cold rolling

  • S.V. Merzlikin (a1) (a2), M. Wildau (a3), K. Steinhoff (a4) and A.W. Hassel (a2)


In this work, direct potential measurements during cold rolling of zinc and X20Cr13 stainless steel were carried out in the rolling slit to follow the tribologic and galvanic mechanisms of hydrogen formation and absorption on the surface of the working rolls made of DHQ1 grade steel. An Ag/AgCl in 3.5 M KCl reference microelectrode was used to record the open circuit potential of the electrochemical system roller-product immersed into commercially relevant electrolyte (rolling emulsion) with a pH value of 4.5 and an electric conductivity 46 mS cm-1. The potential shift into either negative or positive direction of the rolls-product system gives information on the processes taking place at the surface in the course of the friction. A detailed discussion of the in-situ potentiometry experiments reveals a stationary situation established between the destruction and repassivation of the surface structures during continuous cold rolling accompanied with intensive hydrogen evolution. Galvanic coupling of the working rolls with the product significantly intensifies the hydrogen embrittlement related problems of the rolls. Atomic hydrogen is adsorbed on the surface and exhibits a pressure supported absorption into the rolls during their whole lifetime.


Corresponding author

Deceased on 23/12/2013.


Hide All
[1] I.M. Bernstein, Hydrogen Effects in Materials, in: A.W. Thompson, N.R. Moody (Eds.), TMS, Warrendale, PA, 1996, p. 3
[2] Nagumo, M., ISIJ Int. 41 (2001) 590-598
[3] Hirth, J.P., Metall. Trans. A 11 (1980) 861-890
[4] Sofronis, P., Robertson, I.M., AIP Conference Proceedings 837 (2006) 64-70
[5] Merzlikin, S.V., Hassel, A.W., Steinhoff, K., Wildau, M., Practical Metallography 07 (2011) 365-375
[6] Hassel, A.W., Lohrengel, M.M., Electrochim. Acta 40 (1995) 433-437
[7] G.P. Shpenkov, in Tribology Series. 29 D. Dowson (Ed.), Friction Surface Phenomena, Elsevier, 1995
[8] Akiyama, E., Stratmann, M., Hassel, A.W., J. Phys. D 39 (2006) 3157-3164
[9] Abelev, E., Smith, A.J., Hassel, A.W., Ein Eli, Y., J. Electrochem. Soc. 153 (2006) B337-B343
[10] Hassel, A.W., Smith, A.J., Corros. Sci. 49 (2007) 231-239
[11] Weisz-Patrault, D., Ehrlacher, A., Legrand, N., J. Mater. Process. Technol. 211 (2011) 1500-1509
[12] Hassel, A.W., Fushimi, K., Seo, M., Electrochem. Commun. 1 (1999) 180-183
[13] Celis, J.-P., Ponthiaux, P., Wenger, F., Wear 261 (2006) 939-946
[14] Mischler, S., Debaud, S., Landolt, D., J. Electrochem. Soc. 145 (1998) 750-758
[15] Rossi, S., Deflorian, F., Zen, M., Fedrizzi, L., Mater. Corros. 51 (2000) 552-556
[16] Shyrokov, V.V., Vasyliv, Kh.B., Mater. Sci. 44 (2008) 646-652
[17] G. Milazzo, S. Caroli, V.K. Sharma, Tables of Standard Electrode Potentials, Wiley, Chichester, 1978
[18] A.J. Bard, R. Parsons, J. Jordan, Standard Potentials in Aqueous Solutions, Marcel Dekker, New York, 1985
[19] Bratsch, S.G., J. Phys. Chem. Ref. Data 18 (1989) 121
[20] Landolt, D., Mischler, S., Stemp, M., Barril, S., Wear 256 (2004) 517524
[21] Landolt, D., Mischler, S., Stemp, M., Electrochim. Acta 46 (2001) 39133929
[22] Oltra, R., Chapey, B., Renaud, L., Wear 186-187 (1995) 533-541
[23] M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, Pergamon Press, Oxford, 1966
[24] Sholud’ko, V.P., Fiz.-Khim. Mekh. Mater. 18 (1982) 8992
[25] Ng, Dedy, Sen, Tapajyoti, Gao, Feng, Liang, Hong, J. Electrochem. Soc. 155 (2008) H520-H524
[26] Anderson, T.N., Anderson, J.L., Eyring, H., J. Phys. Chem. 73 (1969) 3562-3570
[27] Burstein, G.T., Kearns, M.A., J. Electrochem. Soc. 131 (1984) 991
[28] Tsuru, T., Mater. Sci. Eng. A 146 (1991) 1-14
[29] Bjornkvist, L., Olefjord, I., Corros. Sci. 32 (1991) 231-242
[30] Drazic, D.M., Popic, J.P., Corrosion 60 (2003) 297-303
[31] Trasatti, S., J. Electroanal. Chem. 33 (1971) 351-378
[32] Simao, J., Aspinwall, D.K., J. Mater. Process. Technol. 92-93 (1999) 281-287
[33] Fedrizzi, L., Rossi, S., Bellei, F., Deflorian, F., Wear 253 (2002) 1173-1181
[34] FARADAYIC® Process for Chromium Plating from a Trivalent Bath, files/Industrial Coatings
[35] EPA, Final Report: A Cost-Competitive Functional Trivalent Chromium Plating Process To Replace Hexavalent Chromium Plating
[36] Signorelli, J.W., Serenelli, M.J., Bertinetti, M.A., J. Mater. Process. Technol. 211 (2011) 1500-1509


Prove of hydrogen formation through direct potential measurements in the rolling slit during cold rolling

  • S.V. Merzlikin (a1) (a2), M. Wildau (a3), K. Steinhoff (a4) and A.W. Hassel (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed