Skip to main content Accessibility help
×
Home

Wavelets-based damage localization on beams under the influence of moving loads

  • Machorro-López José Manuel, Bellino Andrea, Marchesiello Stefano and Garibaldi Luigi

Abstract

Early damage detection on structures plays a very important role for ensuring safety and reliability. This paper provides an efficient method based on wavelet transforms in order to detect and localize damage on structures subjected to moving loads such as beams and bridges. A numerical model based on the experimental test-rig utilized in this study is developed by using a finite element commercial software. Different types of damage on the bridge of the numerical model are simulated and transient analyses are performed by incorporating a load which moves constantly along the beam nodes. Continuous wavelet transform diagrams using the vertical acceleration responses show that damage can be identified and localized even with significant percentages of noise. Nevertheless, the method is improved by filtering the signals, removing the border effects, and calculating the total wavelet energy of the beam from the coefficients along the selected range of scales. Thus, the accumulation of wavelet energy could indicate the presence of damage. Finally, laboratory experiments are conducted to validate this work and a good agreement between numerical and experimental results is obtained.

Copyright

Corresponding author

a Corresponding author: andrea.bellino@polito.it

References

Hide All
[1] M. Davey, M.L. Wald, Potential flaw is found in design of fallen bridge, The New York Times, 8, 2007
[2] Farrar, C.R., Jauregui, D.A., Comparative study of damage identification algorithms applied to a bridge: I. Experiment, Smart Mater. Struct. 7 (1998) 704719
[3] Liew, K.M., Wang, Q., Application of wavelet theory for crack identification in structures, J. Eng. Mech. 124 (1998) 152157
[4] Zhu, X.Q., Law, S.S., Wavelet-based crack identification of bridge beam from operational deflection time history, Int. J. Solids Struct. 43 (2006) 22992317
[5] C. Surace, R. Ruotolo, Crack detection of a beam using the wavelet transform, Proceedings of the 12th International Modal Analysis Conference, Honolulu, Hawaii, USA, 1994, pp. 1141–1147
[6] Quek, S., Wang, Q., Zhang, L., Ang, K., Sensitivity analysis of crack detection in beams by wavelet technique, Int. J. Mech. Sci. 43 (2001) 28992910
[7] Douka, E., Loutridis, S., Trochidis, A., Crack identification in beams using wavelet analysis, Int. J. Solids Struct. 40 (2003) 35573569
[8] Gentile, A., Messina, A., On the continuous wavelet transforms applied to discrete vibrational data for detecting open cracks in damaged beams, Int. J. Solids Struct. 40 (2003) 295315
[9] C.L. Liu, A tutorial of the wavelet transform, 2010
[10] Marchesiello, S., Bedaoui, S., Garibaldi, L., Argoul, P., Time-dependent identification of a bridge-like structure with crossing loads, Mech. Syst. Signal Process. 23 (2009) 20192028

Keywords

Wavelets-based damage localization on beams under the influence of moving loads

  • Machorro-López José Manuel, Bellino Andrea, Marchesiello Stefano and Garibaldi Luigi

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.