Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-18T04:20:37.777Z Has data issue: false hasContentIssue false

Quasi-UD glass fibre NCF composites for wind energy applications: a review of requirements and existing fatigue data for blade materials

Published online by Cambridge University Press:  04 June 2013

Katleen Vallons*
Department of Materials Engineering, Katholieke Universiteit Leuven, Belgium
Georg Adolphs
Owens Corning, Composites Solutions Business, Sant Vicençde Castellet, Spain
Paul Lucas
Owens Corning, Composites Solutions Business, Science & Technology Center, Chambéry, France
Stepan V. Lomov
Department of Materials Engineering, Katholieke Universiteit Leuven, Belgium
Ignaas Verpoest
Department of Materials Engineering, Katholieke Universiteit Leuven, Belgium
aCorresponding author:


Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Quasi-unidirectional glass fibre non crimp fabric composites are routinely used in wind energy applications. An important factor to consider in this type of application is the fatigue behaviour of the materials. The present paper gives an overview of the current approach to material fatigue testing and design in the wind energy industry, as well as a review of available material data for the fatigue of unidirectional glass fibre composites. Both “pure” unidirectional and quasi-unidirectional (NCF-based) materials are considered.

Research Article
© AFM, EDP Sciences 2013


M. Zvanik, OC presentation at CFA show, Tampa, Florida, 2001
IEC 61400-1, Wind turbines, Part 1: Design requirements, edition 3, International Electrotechnical Commission, 2005
Guideline for the certification of offshore wind turbines, Germanische Lloyd, 2005
Guideline for the certification of wind turbines, with supplement 2004, Germanische Lloyd, 2003
Guidelines for Design of Wind Turbines, Det Norske Veritas and Risø National Laboratory, 2002
Offshore standard DNV-OS-J101 Design of offshore wind turbine structures, Det Norske Veritas, 2004
Offshore standard DNV-OS-J102 Design and manufacture of wind turbine blades, Offshore and onshore wind turbines, Det Norske Veritas, 2006
Kensche, C.W., Fatigue of composites for wind turbines, Int. J. Fatigue 28 (2006) 13631374 CrossRefGoogle Scholar
Gurit, Section 2: Structural Design, in Wind energy composite materials handbook, downloadable from:
T. Burton, D. Sharpe, N. Jenkins, E. Bossanyi, Wind Energy Handbook, 2001, John Wiley & Sons
S. Drapier, A. Pagot, A. Vautrin, P. Henrat, Influence of the stitching density on the transverse permeability of non-crimped new concept (NC2) multiaxial reinforcements: measurements and predictions, Compos. Sci. Technol. (2002) 1979–1991
Lundström, T.S., The permeability of non-crimp stitched fabrics, Compos. Part A 31 (2000) 13451353 CrossRefGoogle Scholar
Nordlund, M., Lundström, T.S., Numerical Study of the Local Permeability of Noncrimp Fabrics, J. Compos. Mater. 39 (2005) 929947 CrossRefGoogle Scholar
Nordlund, M., Lundstrom, T.S., Frishfelds, V., Jakovics, A., Permeability network model for non-crimp fabrics, Composites Part A: Appl. Sci. Manufacturing, Selected Contributions from the 7th International Conference on Flow Processes in Composite Materials held at University of Delaware, USA 37 (2006) 826835 Google Scholar
L.E. Asp, F. Edgren, A. Sjögren, Effects of stitch pattern on the mechanical properties of non-crimp fabric composites, in ECCM 11, Rhodos, 2004
Edgren, F., Mattsson, D., Asp, L.E., Varna, J., Formation of damage and its effects on non-crimp fabric reinforced composites loaded in tension, Compos. Sci. Technol. 64 (2004) 675692 CrossRefGoogle Scholar
S.V. Lomov, D.S. Ivanov, K. Vallons, I. Verpoest, D.V. Klimshin, T.C. Truong, Peculiarities of damage behaviour of NCF carbon/epoxy laminates under tension, in ICCM 16, Kyoto, Japan, 2007
K. Vallons, The behaviour of carbon fibre–epoxy NCF composites under various mechanical loading conditions, Doctoral dissertation, Dept. of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, 2009
K. Vallons, S.V. Lomov, I. Verpoest, Fatigue and post-fatigue behaviour of carbon/epoxy non crimp fabric composites. in 16th international conference on composite materials, Kyoto, Japan, 2007
K. Vallons, S.V. Lomov, I. Verpoest, Damage evolution in static and fatigue tensile loading of carbon/epoxy NCF composites, in ECOMAS Thematic Conference on Mechanical Response of composites, Porto, 2007
K. Vallons, S.V. Lomov, I. Verpoest, Mechanical properties and damage evolution during static and fatigue loading of carbon-epoxy ncf composites, in Sampe Europe International Conference ’07, Paris, 2007
Truong, T.C., Vettori, M., Lomov, S., Verpoest, I., Carbon composites based on multi-axial multi-ply stitched preforms, Part 4. Mechanical properties of composites and damage observation, Composites Part A 36 (2005) 12071221 CrossRefGoogle Scholar
M. Vettori, T.T. Chi, S.V. Lomov, I. Verpoest, Progressive damage characterization of stitched, biaxial, multi-ply carbon fabrics composites, in ECCM 11, Rhodos, 2004
V. Carvelli, T.T. Chi, M.S. Larosa, S.V. Lomov, C. Poggi, D.R. Angulo, I. Verpoest, Experimental and numerical determination of the mechanical properties of multi-axial multi-ply composites, in ECCM 11, Rhodos, 2004
Bibo, G.A., Hogg, P.J., Kemp, M., Mechanical characterisation of glass- and carbon-fibre-reinforced composites made with non-crimp fabrics, Compos. Sci. Technol. 57 (1997) 12211241 CrossRefGoogle Scholar
A.P. Godbehere, A.R. Mills, P. Irving, Non-crimp fabrics versus prepreg CFRP composites – A comparison of mechanical performance, in 6th international conference on fibre reinforced composites – FRC’94, Newcastle, 1994
P.A. Smith, Carbon Fiber Reinforced Plastics–Properties (2.04), in Comprehensive Composite Materials, Elsevier Sciences Ltd, 2000, pp. 107–150
S. Sandford, L. Boniface, S.L. Ogin, S. Anand, D. Bray, C.R. Messenger, Damage accumulation in non-crimp fabric based composites under tensile loading, in Proceedings of the Eighth European Conference on Composite Materials, ECCM-8,1998, Naples, Italy, Woodhead Publishing, Cambridge, UK
Company product information Owens Corning: Double Bias Fabrics (±45°)
Company product information Owens Corning: Quadriaxial Fabrics (0°/90°/±45°)
Company product information Owens Corning: Triaxial Fabrics (0°/±45° OR 90°/±45°)
Company product information Owens Corning: Unidirectional Fabrics (0° or 90°)
C.W. Kensche, Fatigue of materials and components for wind turbine rotor blades, Office for official publications of the European communities, 1996
J. Wedel-Heinen, J. KrygerTadich, Qualification of materials and blades for wind turbines, in RisøBlade Materials Symposium, 2006
S. Wessels, M. Strobel, A.V. Wingerde, I. Koprek, H.-G. Busmann, Improved fatigue design methods for offshore wind turbine rotor blades condisering non-linear Goodman analysis combined with finite element analysis, in EWEC, Warsaw, 2010
D. Veldkamp, A probabilistic approach to wind turbine fatigue design, in EWEC, Milan, Italy, 2007
B. Hayman, J. Wedel-Heinen, P. Brøndsted, Material challenges in present and future wind energy, MRS Bulletin 33 (2008),
L.G.J. Janssen, A.M.V. Wingerde, C.W. Kensche, T.P. Philippidis, P. Brøndsted, A.G. Dutton, R.P.L. Nijssen, O. Krause, Reliable Optimal Use of Materials for Wind Turbine Rotor Blades, OPTIMAT BLADES, Report ECN-C-06-023, Office for Official Publications of the European Communities, Luxembourg, 2006
J. Wedel-Heinen, J.K. Tadich, C. Brokopf, L.G.J. Janssen, A.M.V. Wingerde, D.R.V.V. Delft, C.W. Kensche, T.P. Philippidis, A.P. Brøndsted, G. Dutton, R.P.L. Nijssen, I. Verpoest, Implementation of OPTIMAT in Technical Standards, OPTIMAT BLADES, OBTG6R002 rev. 8, ENK6-CT-2001-00552 PROJECT No.: NNE5-2001-00174, 2006
IEC 61400-23, Technical Specification, Wind turbine generation systems – Part 23: Full-scale structural testing of rotor blades, International Electrotechnical Commission, 2001
Boller, K.H., Fatigue characteristics of RP laminates subjected to axial loading, Modern Plastics 41 (1964) 145 Google Scholar
J.W. Davis, J.A. McCarthy, J.N. Schurb, Fatigue resistance of reinforced plastics, Mater. Des. Engng. (1964) 87–91
Dally, J.W., Broutman, L.J., Frequency effects on the fatigue of glass reinforced plastics, J. Compos. Mater. 1 (1967) 424442 CrossRefGoogle Scholar
Boller, K.H., Fatigue fundamentals for composite materials, ASTM STP 460 (1969) 217235 Google Scholar
Dew-Hughes, D., Way, J.L., Fatigue of fibre – reinforced plastics: a review, Compos. 4 (1973) 167-173 CrossRefGoogle Scholar
Dharan, C.K.H., Fatigue failure in graphite fibre and glass fibre-polymer composites, J. Mater. Sci. 10 (1975) 16651670 CrossRefGoogle Scholar
Gauchel, J.V., Steg, I., Cowling, J.E., Reducing effect of water on fatigue properties of S-glass epoxy composites, ASTM STP 569 (1975) 4552 Google Scholar
Davis, J.N., Sundsrud, G.J., Fatigue data on a variety of nonwoven glass composites for helicopter rotor blades, ASTM STP 674 (1979) 137148 Google Scholar
Joneja, S.K., Matrix contribution to fatigue behavior of glass reinforced polyester composites, J. Reinforced Plastics Compos. 6 (1987) 343356 CrossRefGoogle Scholar
Konur, O., Matthews, F.L., Effect of the properties of the constituents on the fatigue performance of composites: a review, Compos. 20 (1989) 317328 CrossRefGoogle Scholar
Curtis, P.T., Tensile fatigue mechanisms in unidirectional polymer matrix composite materials, Int. J. Fatigue 13 (1991) 377382 CrossRefGoogle Scholar
Bhat, M.R., Murthy, C.R.L., Fatigue damage stages in unidirectional glass-fibre-epoxy composites: identification through acoustic emission technique, Int. J. Fatigue 15 (1993) 401405 CrossRefGoogle Scholar
El Kadi, H., Ellyin, F., Effect of stress ratio on the fatigue of unidirectional glass fibre/epoxy composite laminae, Compos. 25 (1994) 917924 CrossRefGoogle Scholar
G.D. Sims, Fatigue test methods, problems and standards, in Fatigue in composites, in: B. Harris (ed.), Woodhead publishing limited, 2003, pp. 36–63
V. Giavotto, V. Wagner, M. Caslini, C. Zanotti, Consideration of early fatigue damage on damage accumulation and on delamination mechanism in composite materials structures, in 14th ICAF conference, 1987
Salkind, M.J., Fatigue of composite materials, ASTM STP 497 (1982) 143169 Google Scholar
R. Talreja, K. Anthony, Z. Carl, Fatigue of polymer matrix composites, in Comprehensive Composite Materials, Pergamon, Oxford, 2000, pp. 529–552
Gassan, J., Dietz, T., Fatigue behavior of cross-ply glass-fiber composites based on epoxy resins of different toughnesses, Compos. Sci. Technol. 61 (2001) 157163 CrossRefGoogle Scholar
Owen, M.J., Rose, G., Polyester flexibility versus fatigue behaviour of fibre reinforced plastics, Mod. Plast. 47 (1970) 130138 Google Scholar
M.J. Owen, Fatigue, glass reinforced plastics, in: B. Parkyn (ed.), Iliffe Books, London, 1970, pp. 251–267
Newaz, G.M., Influence of matrix material on flexural fatigue behaviour of unidirectional composites, Compos. Sci. Technol. 24 (1985) 199214 CrossRefGoogle Scholar
Epaarachchi, J.A., Clausen, P.D., An empirical model for fatigue behavior prediction of glass fibre-reinforced plastic composites for various stress ratios and test frequencies, Composites Part A Appl. Sci. Manufacturing 34 (2003) 313326 CrossRefGoogle Scholar
P.W. Bach, ECN investigation of polyester composite materials, in Fatigue of materials and components for wind turbine rotor blades, in: C.W. Kensche (ed.), German Aerospace Establishment, 1996, pp. 10–38
P.K. Mallick, Fiber-reinforced composites: Materials, Manufacturing and Design, 3rd edition, CRC Press – Taylor & Francis Group, 2008
D.S. Cairns, J.D. Skramstad, Evaluation of hand lay-up and resin transfer molding in composite wind turbine blade manufacturing, 2000, Sandia National Laboratories, SAND2000-1425
E.B. Larsen, Pressure bag molding: manufacturing, mechanical testing, non-destructive evaluation, and analysis, 2007, Sandia National Laboratories, SAND2006-7855P
OPTIMAT BLADES PROJECT, data and publications available from:
DOE/MSU composite material fatigue database, March 31, 2010 version 19.0. Available from:
J.F. Mandell, R.M. Reed, D.D. Samborsky, Fatigue of fiberglass wind turbine blade materials, Department of chemical engineering, Montana state university, SAND92-7005, 1992
J.F. Mandell, D.D. Samborsky, DOE/MSU Composite material fatigue database: Test methods, materials, and analysis, Sandia National Laboratories, Albuquerque, NM, Contractor Report SAND97-3002, 1997
J.F. Mandell, D.D. Samborsky, D.S. Cairns, Fatigue of composite materials and substructures for wind turbine blades, Sandia National Laboratories, Albuquerque, NM Contractor Report SAND2002-0771, 2002
J.F. Mandell, D.D. Samborsky, D.W. Combs, M.E. Scott, D.S. Cairns, Fatigue of composite material beam elements representative of wind turbine blade substructure, National Renewable Energy Laboratory, NREL Contractor Report SR-500-24379, 1998
N.K. Wahl, J.F. Mandell, D.D. Samborsky, Spectrum fatigue lifetime and residual strength for fiberglass laminates, Sandia National Laboratories, A lbuquerque, NM Contractor Report SAND2002-0546, 2002
M. Wouters, Effects of fibre bundle size and stitch pattern on the static properties of unidirectional carbon-fibre non-crimp fabric composites, in Department of applied physics and mechanical engineering, division of polymer engineering, Lulea university of technology, Lulea, 2005, p. 85
D.D. Samborsky, Fatigue of E-glass fiber reinforced composite materials and substructures, Montana State University, Bozeman, Montana, 1999
J. Locke, U. Valencia, Design studies for twist-coupled wind turbine blades, Sandia National laboratories, SAND2004-0522, 2004
Gurit, Section 3: Blade Manufacturing Process, in Wind energy composite materials handbook, downloadable from:
F. Keßling, Modellierung des aerolastischen gesamtsytems einer windturbine mit hilfe symbolischer programmierung, DFVLR, DFVLR-FB 84-10, 1984
P.J. Hogg, Manufacturing challenges for wind turbines. in Advanced Manufacturing for Composite Technologies Conference, Manchester, UK, 2008