Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-22T19:15:57.272Z Has data issue: false hasContentIssue false

Photothermal radiometry for the estimation of the thickness of a protective chromium layer deposited on a steel substrate

Published online by Cambridge University Press:  18 June 2014

J.L. Bodnar*
Affiliation:
GRESPI/ECATHERM, Université de Reims Champagne Ardenne, BP 1039, 51687 Reims, France
O. Faugeroux
Affiliation:
PROMES, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, France
B. Claudet
Affiliation:
PROMES, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, France
*
a Corresponding author: jl.bodnar@univ-reims.fr
Get access

Abstract

The measurement of the thickness of a coating layer is a traditional industrial problem. Many methods of measurement are already classically used for that purpose. However, the majority of these methods require either contact with the sample to be studied, or its destruction. These constraints limit their applicability. Photothermal radiometry is already largely used in the field of thermophysical properties measurement and for the detection and characterization of defects. This method does not impose the constraints mentioned above. It could thus be a complementary technique of the classical ones. The purpose of this work is then to approach the possibilities of this photothermal method, implemented under pulse excitation and front face analysis, for the measurement of the coating thickness. Using theoretical and experimental studies, we show that the method allows a good estimation of the thickness of chromium deposits on a steel substrate, at distance, without contact and in a non-destructive way.

Type
Research Article
Copyright
© AFM, EDP Sciences 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

R. Levy, M. Saurat, Contrôle des revêtements en production industrielle, TI, 1985, fiche r 1680
J. Dumont-Fillon, Mesure et contrôle; Contrôle non destructif, TI, 1996, fiche r 1400
X. Maldague, Theory and practice of infrared technology for non destructive testing
V.P. Vavilov, Non destructive testing handbook: thermal/infrared testing
Le Contrôle des matériaux par méthodes optiques infrarouge, Livre : Méthodes et Techniques Optiques pour l’Industrie, Collectif d’auteurs, dirigé par Paul Smigielski, ISBN : 978-2-918241-00-3, code EAN : 9782918241003, Société Française d’Optique, novembre 2009, pp. 232−296
Candoré, J.C., Bodnar, J.J., Detalle, V., Grossel, P., Non-destructive testing of works of art by stimulated infrared thermography, Eur. Phys. J. Appl. Phys. 57 (2012) 21002 CrossRefGoogle Scholar
Candoré, J.C., Bodnar, J.L., Detalle, V., Grossel, P., Characterization of defects situated in a fresco by stimulated infrared thermography, Eur. Phys. J. Appl. Phys. 57 (2012) 11002 CrossRefGoogle Scholar
Bodnar, J.L., Candoré, J.C., Nicolas, J.L., Szatanik, G., Detalle, V., Vallet, J.M., Stimulated infrared thermography applied to help restoring mural paintings, NDT E Int. 49 (2012) 4046 CrossRefGoogle Scholar
Parker, W.J., Jenkins, R.J., Butler, C.P., Abbot, G.L., Flash method of determining thermal diffusivity, heat capacity,and thermal conductivity, J. Appl. Phys. 32 (1961) 16791684 CrossRefGoogle Scholar
Deem, H.W., Wood, W.D., Rev. Sci. Instrum. 33 (1962) 11071109 CrossRef
D. Maillet, S. André, J.C. Batsale, A. Degiovanni, C. Moyne, Thermal quadrupoles. Solving the heat equation through integral transforms, Wiley, 2000
Stefest, H., « Remarks on algorithm 368 », A.C.M. Commun. 13 (1970) 624 Google Scholar
O. Faugeroux, « Caractérisation thermophysique de revêtement de protection thermomécanique par méthode photothermique impulsionnelle », Ph.D. thesis, Université de Perpignan, Décembre 2001
J. Hladik, Métrologie des propriétés thermophysiques des matériaux, Masson, 1990