Skip to main content Accessibility help
×
Home

Modelling crowd-structure interaction

  • Philippe Pécol (a1), Stefano Dal Pont (a2), Silvano Erlicher (a3) and Pierre Argoul (a1)

Abstract

An emerging research topic in civil engineering is the dynamic interaction between crowds and structures. Structures such as footbridges, which oscillate due to the crossing of a group of pedestrians, or stands within stadia or concert halls, which vibrate due to the rythmic movement of the audience are of particular interest. The objective of this study is twofold: modelling the movement of pedestrians with consideration of pedestrian-pedestrian, and pedestrian-obstacle interactions, and the incorporation of a pedestrian-structure coupling in the previous model. Frémond’s model, which allows us to simulate the movement of an assembly of particles and accounts for collisions among considered rigid particles, is presented and adapted to the crowd by giving a willingness to the circular particles, which allows each pedestrian to move according to a given target. To handle the crowd-structure interaction in the case of lateral oscillations of footbridges, the Kuramoto differential equation governing the time evolution of the lateral motion of each pedestrian is implemented in the previous model. Preliminary results obtained from numerical simulations are presented and discussed.

Copyright

Corresponding author

a Corresponding author: philippe.pecol@enpc.fr

References

Hide All
[1]J. Bodgi, Synchronisation piétons-structure: Application aux vibrations des passerelles souples, Ph.D. thesis, École Nationale des Ponts et Chaussées, 2008
[2]Strogatz, S., Abrams, D., McRobie, A., Eckhardt, B., Ott, E., Theoretical mechanics: Crowd synchrony on the Millenium bridge, Nature 438 (2005) 4344
[3]Zivanovic, S., Pavic, A., Reynolds, P., Vibration serviceability of footbridges under human-induced excitation: a litterature review, J. Sound Vib. 279 (2005) 174
[4]S. Zivanovic, V. Ravic, I. El-Bahnasy, A. Pavic, Statistical characterisation of parameters defining human walking as observed on an indoor passerelle, in Experimental Vibration Analysis for Civil Engineering Structures, EVACES’07, Porto, Portugal, 219-225 (2007)
[5]D.M. Abrams, Two coupled oscillator models: the Millenium bridge and the chimera state, Ph.D. thesis, Cornell University, 2006
[6]Bodgi, J., Erlicher, S., Argoul, P., Lateral vibration of footbridges under crowd-loading: continuous crowd modelling approach, Key Engineering Materials 347 (2007) 685690
[7]P. Charles, C. Delavaud, A. Hekimian, J. Renault, T. Saez, Dispositif d’essais sur un modèle de passerelle, rapport d’essais SETRA, 2005
[8]Hankin, B.D., Wright, R.A., Passenger flow in subways, Oper. Res. 9 (1958) 8188
[9]Helbing, D., Traffic and related self-driven many-particle systems, Rev. Mod. Phys. 73 (2002) 10671141
[10]Henderson, L.F., The statistics of crowd fluids, Nature 229 (1971) 381383
[11]J. Venel, Modélisation mathématique des mouvements de foule, Ph.D. thesis, Laboratoire de Mathématiques, Université Paris XI, Orsay, France, 2008
[12]Blue, V., Adler, J., Cellular automata microsimulation of bi-directional pedestrian flows, J. Transp. Res. Board 1678 (2000) 135141
[13]Teknomo, K., Application of microscopic pedestrian simulation model, Transp. Res. Part F 9 (2006) 1527
[14]S.P. Hoogendoorn, P.H.L. Bovy, W. Daamen, Microscopic pedestrian wayfinding and dynamics modelling, Pedestrian and Evacuation Dynamics (2001) 123–154
[15]Helbing, D., Molnar, P., Social force model for pedestrian dynamics, Phys. Rev. E 51 (1995) 42824286
[16]Reynolds, C., Flocks, herds, and schools: A distributed behavioral model, Comput. Graph. 21 (1987) 2534
[17]Paris, S., Pettré, J., Donikian, S., Pedestrian reactive navigation for crowd simulation: a predictive approach, Comput. Graph. Forum 26 (2007) 665674
[18]S. Paris, Caractérisation des niveaux de services et modélisation des circulations de personnes dans les lieux d’échanges, Ph.D. thesis, Université de Rennes 1, 2007
[19]M.S. Garcia, Stability, scaling and chaos in passive-dynamic gait models, Ph.D. thesis, Cornell University, 1999
[20]S. Erlicher, A. Trovato, P. Argoul, Modeling the lateral pedestrian force on a rigid floor by a self-sustained oscillator, Mech. Syst. Signal Process 2010 doi:10.1016/j.ymssp.2009.11.006
[21]P.A. Cundall, A computer model for simulating progressive large scale movements of blocky rock systems, in Proc. Symp. Int. Soc. Rock Mech., 1971, Vol. 1
[22]Cundall, P.A., Strack, O.D.L., A discrete numerical model for granular assemblies, Geotechnique 29 (1979) 4765
[23]Y. Kishino, Disk model analysis of granular media, Micromechanics of Granular Materials (1988) 143–152
[24]M.P. Allen, D.J. Tildesley, Computer simulation of liquids, Oxford University Press, 1987
[25]M. Jean, J.J. Moreau, Unilaterality and dry friction in the dynamics of rigid bodies collection, Contact Mechanics Int. Symp. (1992) 31–48
[26]Frémond, M., Rigid bodies collisions, Phys. Lett. A 204 (1995) 3341
[27]Radjai, F., Jean, M., Moreau, J.J., Roux, S., Force distributions in dense two-dimensional granular systems, Phys. Rev. Lett. 77 (1996) 264277
[28]Jean, M., The non smooth contact dynamics method, Compt. Methods Appl. Math. Eng. 177 (1999) 235257
[29]Paoli, L., Time discretization of vibro-impact, Phil. Trans. R. Soc. A 359 (2001) 24052428
[30]M. Renouf, Optimisation numérique et calcul parallèle pour l’étude des milieux divisés bi- et tridimensionnels, Ph.D. thesis, Université Montpellier II, Sciences et Techniques du Languedoc, 2004
[31]Saussine, G., Cholet, C., Gautier, P.E., Dubois, F., Bohatier, C., Moreau, J.J., Modelling ballast behaviour under dynamic loading, Part 1: a 2d polygonal discrete element method approach, Comput. Meth. Appl. Mech. Eng. 195 (2006) 28412859
[32]M. Frémond, Collisions, Edizioni del Dipartimento di Ingegneria Civile dell’Università di Roma Tor Vergata, ISBN 978-88-6296-000-7, 2007
[33]J.J. Moreau, Unilateral contact and dry friction in finite freedom dynamics, in J.J. Moreau, P.-D. Panagiotopoulos (ed.) Non Smooth Mechanics and Applications, CISM Courses and Lectures, Vol. 302, Springer-Verlag, Wien, New York, 1988, pp. 1–82
[34]J.J. Moreau, Some numerical methods in multibody dynamics: Application to granular materials, Eur. J. Mech. A/Solids (1994) 93–114
[35]C. Ericson, Real Time Collision Detection, Morgan Haufmann Publishers, 2004
[36]Dal Pont, S., Dimnet, E., A theory for multiple collisions of rigid solids and numerical simulation of granular flow, Int. J. Solids Struct. 43/20 (2006) 61006114
[37]Dal Pont, S., Dimnet, E., Theoretical approach to instantaneous collisions and numerical simulation of granular media using the A-CD2 method, Communications in Applied Mathematics and Computational Science, Berkeley 3/1 (2008) 124
[38]Moreau, J.J., Sur les lois du frottement, de la viscosité et de la plasticité, C. R. Acad. Sci. Paris 271 (1970) 608611
[39]R. Kimmel, J.A. Sethian, Fast marching methods for computing distance maps and shortest paths, Technical Report 669, CPAM, University of California, Berkeley, 1996
[40]Helbing, D., Farkas, I., Vicsek, T., Simulating dynamic features of escape panic, Nature 407 (2000) 487490
[41]D. Helbing, I. Farkas, P. Molnár, T. Vicsek, Simulation of pedestrians crowds in normal and evacuation situations, M. Schreckenberg and S. Deo Sarma (Ed.), Pedestrian and evacuation dynamics, 2002, pp. 21–58
[42]Zivanovic, S., Pavic, A., Reynolds, P., Probability-based prediction of multi-mode vibration response to walking excitation, Eng. Struct. 29 (2007) 942954
[43]Andriacchi, T.P., Ogle, J.A., Galante, J.O., Walking speed as a basis for normal and abnormal gait measurements, J. Biomech. 10 (1977) 261268
[44]Dallard, P., Fitzpatrick, A.J., Flint, A., Low, A., Ridsdill-Smith, R.M., The Millenium bridge London – problems and solutions, The Structural Engineer 79 (2001a) 1517
[45]Dallard, P., Fitzpatrick, A.J., Flint, A., Low, A., Ridsdill-Smith, R.M., The Millenium bridge London, The Structural Engineer 79 (2001b) 1733

Keywords

Modelling crowd-structure interaction

  • Philippe Pécol (a1), Stefano Dal Pont (a2), Silvano Erlicher (a3) and Pierre Argoul (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed