Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-23T18:02:54.187Z Has data issue: false hasContentIssue false

Modélisation du comportement non-linéaire des poteaux en bois renforcés par la fibre de carbone

Published online by Cambridge University Press:  12 June 2013

Farid Bentayeb
Affiliation:
Département de Génie Civil, Université Mouloud Mammeri de Tizi-Ouzou, Algérie
Imane Tavakoli-Gheynani
Affiliation:
Université de Lorraine, LERMAB, École Nationale Supérieure des Technologies et Industries du Bois ENSTIB, 27 rue Philippe Séguin, 88000 Epinal, France
Mohammed El Ganaoui
Affiliation:
Université de Lorraine, LERMAB, Institut Universitaire de Technologie de Longwy, 54400 Cosnes et Romain, France
Anis Bouali
Affiliation:
Université de Lorraine, LERMAB, École Nationale Supérieure des Technologies et Industries du Bois ENSTIB, 27 rue Philippe Séguin, 88000 Epinal, France
Mourad Khelifa*
Affiliation:
Université de Lorraine, LERMAB, École Nationale Supérieure des Technologies et Industries du Bois ENSTIB, 27 rue Philippe Séguin, 88000 Epinal, France
*
a Auteur pour correspondance : mourad.khelifa@enstib.uhp-nancy.fr
Get access

Abstract

L’objectif principal de cet article est la mise au point d’une méthodologie numérique de prévision du comportement local d’un procédé de renforcement des poteaux en bois par la fibre de carbone. En particulier, on s’intéresse à l’étude du comportement élasto-plastique du matériau bois avec effet du renforcement. Une modélisation basée sur la thermodynamique des processus irréversibles avec variables d’état est utilisée pour traduire le couplage entre le comportement plastique à écrouissage isotrope et l’effet du renforcement. Les aspects théoriques et numériques de cette formulation sont décrits en détail. La résolution du problème d’équilibre global est assurée par un schéma Dynamique Explicite. La validation de la procédure de calcul implémentée dans ABAQUS/Explicit est faite sur la simulation d’un essai de compression des éprouvettes circulaires en bois renforcées par la fibre de carbone. Les résultats des simulations sont confrontés à ceux de l’expérience.

Type
Research Article
Copyright
© AFM, EDP Sciences 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

Gezer, H., Aydemir, B., The effect of the wrapped carbon fiber reinforced polymer material on fir and pine woods, Mater. Des. 31 (2010) 35643567 CrossRefGoogle Scholar
Lopez-Anido, R., Antonis Michael, P., Thomas Sandford, C., Experimental characterization of FRP composite-wood pile structural response by bending tests, Mar. Struct. 16 (2003) 257274 CrossRefGoogle Scholar
Campilho, R.D.S.G., de Moura, M.F.S.F., Barreto, A.M.J.P., Morais, J.J.L., Domingues, J.J.M.S., Experimental and numerical evaluation of composite repairs on wood beams damaged by cross-graining, Constr. Build. Mater. 24 (2010) 531537 CrossRefGoogle Scholar
Li, Y.-F., Xie, Y.-M., Tsai, M.-J., Enhancement of the flexural performance of retrofitted wood beams using CFRP composite sheets, Constr. Build. Mater. 23 (2009) 411422 CrossRefGoogle Scholar
Camille Issa, A., Kmeid, Z., Advanced wood engineering: glulam beams, Constr. Build. Mater. 19 (2005) 99106 CrossRefGoogle Scholar
Wu, G., Lu, Z.T., Wu, Z.S., Strength and ductility of concrete cylinders confined with FRP composites, Constr. Build. Mater. 20 (2006) 134148 CrossRefGoogle Scholar
Bentayeb, F., Ait Tahar, K., Chateauneuf, A., New technique for reinforcement of concrete columns confined by embedded composite grid, Constr. Build. Mater. 22 (2008) 16241633 CrossRefGoogle Scholar
Mander, J.B., Priestley, M.J.N., Park, R., Teocalli stress–strain model for confined concrete, J. Struct. Eng. 114 (1988) 180449 CrossRefGoogle Scholar
Li, L.Y., Guo, Y.C., Liu, F., Bungey, J.H., An experimental and numerical study of the effect of thickness and length of CFRP on performance of repaired reinforced concrete beams, Constr. Build. Mater. 20 (2006) 9019 CrossRefGoogle Scholar
Corradi, M., Borri, A., Fir and chestnut timber beams reinforced with GFRP pultruded elements, Compos. Part B: Eng. 38 (2007) 17281 CrossRefGoogle Scholar
Taljsten, B., Strengthening concrete beams for shear with CFRP sheets, Constr. Build. Mater. 17 (2003) 1526 CrossRefGoogle Scholar
Montoya, E., Vecchio, F.J., Sheikh, S.A., Numerical evaluation of the behaviour of steel- and FRP-confined concrete columns using compression field modelling, Eng. Struct. 26 (2004) 15351545 CrossRefGoogle Scholar
Luccioni, B.M., Rougier, V.C., A plastic damage approach for confined concrete, Comput. Struct. 83 (2005) 22382256 CrossRefGoogle Scholar
Mirmiran, A., Zagers, K., Yuan, W., Nonlinear finite element modeling of concrete confined by fiber composites, Finite Elem. Anal. Des. 35 (2000) 7996 CrossRefGoogle Scholar
Fardis, M.N., Khalili, H.H., FRP-encased concrete as a structural material, Mag. Concr. Res. 34 (1982) 191202 CrossRefGoogle Scholar
Nanni, A., Bradford, N.M., FRP-jacketed concrete under uniaxial compression, Const. Build. Mater. 9 (1995) 115124 CrossRefGoogle Scholar
Ahmad, S.H., Khaloo, A.R., Irshaid, A., Behavior of concrete spirally confined by fiberglass filaments, Mag. Concr. Res. 43 (1991) 143148 CrossRefGoogle Scholar
Samaan, M., Mirmiran, A., Shahawy, M., Model of concrete confined by fiber composites, J. Struct. Eng. ASCE 124 (1998) 10251031 CrossRefGoogle Scholar
V.M. Karbhari, A. Mirmiran, Construction specifications for bonded repair and retrofit of concrete structures using FRP composite, Results of a NCHRP study, Florida, USA, 2004
A.M. Mirmiran, A. Nanni, V.M. Karbhari, Bonded repair and retrofit of concrete structures using FRP composites, NCHRP Report 514, Transportation Research Board, 2004
Mirmiran, A.M., Beitelman, A., Test and modeling of carbon-wrapped concrete columns, Compos. Part B: Eng. ASCE 31 (2000) 47180 Google Scholar
Hale, G., Bulent, A., The effect of the wrapped carbon fiber reinforced polymer material on fir and pine woods, Mater. Des. 31 (2010) 35643567 Google Scholar
J.-P. Biger, Pathologie des structures en bois, Techniques de l’Ingénieur, traité Construction, C 2450
Oudjene, M., Khelifa, M., Elasto-plastic constitutive law for wood behaviour under compressive loadings, Constr. Build. Mater. 23 (2009) 33593366 CrossRefGoogle Scholar
Oudjene, M., Khelifa, M., Finite element modelling of wooden structures at large deformations and brittle failure prediction, Mater. Des. 30 (2009) 40814087 CrossRefGoogle Scholar
ABAQUS, Theory manual, Version 6.2, Hibbit, Karson and Sorensen, Inc., 2001
J.C. Simo, T.J.R. Hughes, Computational inelasticity, Springer, New York, 1998
Y. Lobel, Problèmes de calcul des barres à inertie variable en bois lamellé collé, Recueil de contributions au calcul des éléments et structures bois (première partie), Annales de l’ITBTP, No. 466, 1988