Let FN be the set of real numbers x whose continued fraction expansion x = [a0; a1, a2,…, an,…] contains only elements ai = 1,2,…, N. Here N ≥ 2. Considerable effort, [1,3], has centred on metrical properties of FN and certain measures carried by FN. A classification of sets of measure zero, as venerable as the dimensional theory, depends on Fourier-Stieltjes transforms: a closed set E of real numbers is called an M0-set, if E carries a probability measure λ whose transform vanishes at infinity. Aside from the Riemann-Lebesgue Lemma, no purely metrical property of E can ensure that E is an M0-set. For the sets FN, however, metrical properties can be used to construct the measure λ.