Skip to main content Accessibility help
×
×
Home

TWO-WEIGHT NORM INEQUALITIES FOR VECTOR-VALUED OPERATORS

  • Carme Cascante (a1) and Joaquin M. Ortega (a2)

Abstract

We study two-weight norm inequalities for a vector-valued operator from a weighted $L^{p}(\unicode[STIX]{x1D70E})$ -space to mixed norm $L_{l^{s}}^{q}(\unicode[STIX]{x1D707})$ spaces, $1<p<\infty$ , $0<q<p$ . We apply these results to the boundedness of Wolff’s potentials.

Copyright

References

Hide All
1. Cascante, C. and Ortega, J. M., On the boundedness of discrete Wolff potentials. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 8(2) 2009, 309331.
2. Cascante, C., Ortega, J. M. and Verbitsky, I. E., Trace inequalities of Sobolev type in the upper triangle case. Proc. Lond. Math. Soc. (3) 80 2000, 391414.
3. Cascante, C., Ortega, J. M. and Verbitsky, I. E., On L p - L q inequalities. J. Lond. Math. Soc. (2) 7 2006, 497511.
4. Cruz-Uribe, D., Two weight norm inequalities for fractional integral operators and commutators. Preprint, 2014, arXiv:1412.4157v1 [math.CA].
5. Dor, L. E., On projections in L 1 . Ann. of Math. (2) 102 1975, 463474.
6. Duoandikoetxea, J., Fourier Analysis (Graduate Studies in Mathematics 29 ), American Mathematical Society (Providence, RI, 2001).
7. Frazier, M. and Jawerth, B., A discrete transform and decomposition of distributional space. J. Funct. Anal. 93 1990, 34170.
8. Hänninen, T. S., Two weight inequality for vector-valued positive dyadic operators by parallel stopping cubes. Preprint, 2014, arXiv:1404.6933 [math.CA].
9. Hänninen, T. S., Another proof of Scurry’s characterization of a two weighted norm inequality for a sequence-valued positive dyadic operator. Preprint, 2014, arXiv:1304.7759v1 [math.CA].
10. Hänninen, T. S., Dyadic analysis of integral operators: median oscillation decomposition and testing conditions. PhD Thesis, University of Helsinki, 2015. Available athttp://urn.fi/URN:ISBN:978-951-51-1393-1.
11. Hänninen, T. S., Hytönen, T. P. and Li, K., Two-weight $L^{p}-L^{q}$ bounds for positive dyadic operators: unified approach to $p\leqslant q$ and $p>q$ . Potential Anal. (to appear). Preprint, 2014,arXiv:1412.2593v1 [math.CA].
12. Hytönen, T., The A 2 theorem: remarks and complements. In Harmonic Analysis and Partial Differential Equations (Contemporary Mathematics 612 ), American Mathematical Society (Providence, RI, 2014), 91106.
13. Lacey, M. T., Sawyer, E. T. and Uriarte-Tuero, I., Two weight inequalities for discrete positive operators. Preprint, 2009, arXiv:0911.3437v4 [math.CA].
14. Lerner, A. K. and Nazarov, F., Intuitive dyadic calculus: the basics. Preprint, 2015,arXiv:1508.05639 [math.CA].
15. Monroe, M. E., Introduction to Measure and Integration, Addison-Wesley (Reading, MA, 1953).
16. Nazarov, F., Treil, S. and Volberg, A., The Bellman function and two-weight inequalities for Haar multipliers. J. Amer. Math. Soc. 12 1999, 900929.
17. Sawyer, E. T., A characterization of a two weight norm inequality for maximal operators. Studia Math. 75 1982, 111.
18. Scurry, J., A characterization of two-weight inequalities for a vector-valued operator. Preprint, 2010, arXiv:1007.3089 [math.CA].
19. Stein, E. M., Harmonic Analysis, Real-Variable Methods, Orthogonality, and Oscillatory Integrals (Princeton Mathematical Series 43 ), Princeton University Press (Princeton, NJ, 1993).
20. Tanaka, H., A characterization of two-weight trace inequalities for positive dyadic operators in the upper triangle case. Potential Anal. 41(2) 2014, 487499.
21. Treil, S., A remark on two weight estimates for positive dyadic operators. Preprint, 2012,arXiv:1201.1455 [math-CA].
22. Verbitsky, I. E., Imbedding and multiplier theorems for discrete Littlewood–Paley spaces. Pacific J. Math. 176 1996, 529556.
23. Vuorinen, E., $L^{p}(\unicode[STIX]{x1D707})\rightarrow L^{q}(\unicode[STIX]{x1D708})$ characterizations for well localized operators. J. Fourier Anal. Appl. (to appear). Preprint, 2014, arXiv:1412.2117 [math.CA].
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematika
  • ISSN: 0025-5793
  • EISSN: 2041-7942
  • URL: /core/journals/mathematika
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed