Skip to main content Accessibility help

A SMALL VALUE ESTIMATE FOR $\mathbb {G}_{{\textrm{a}}}\times \mathbb {G}_{{\textrm{m}}}$

  • Damien Roy (a1)


A small value estimate is a statement providing necessary conditions for the existence of certain sequences of non-zero polynomials with integer coefficients taking small values at points of an algebraic group. Such statements are desirable for applications to transcendental number theory to analyze the outcome of the construction of an auxiliary function. In this paper, we present a result of this type for the product $ \mathbb {G}_{\mathrm {a}}\times \mathbb {G}_{\mathrm {m}}$ whose underlying group of complex points is $\mathbb {C}\times \mathbb {C}^{*}$ . It shows that if a certain sequence of non-zero polynomials in $ \mathbb {Z}[X_1,X_2]$ takes small values at a point $(\xi ,\eta )$ together with their first derivatives with respect to the invariant derivation $\partial /\partial X_1 + X_2 (\partial /\partial X_2)$ , then both $\xi $ and $\eta $ are algebraic over  $\mathbb {Q}$ . The precise statement involves growth conditions on the degree and norm of these polynomials as well as on the absolute values of their derivatives. It improves on a direct application of Philippon’s criterion for algebraic independence and compares favorably with constructions coming from Dirichlet’s box principle.



Hide All
[1]Brownawell, W. D. and Masser, D. W., Multiplicity estimates for analytic functions II. Duke Math. J. 47 (1980), 273295.
[2]Fischler, S., Interpolation on algebraic groups. Compos. Math. 141 (2005), 907925.
[3]Laurent, M. and Roy, D., Criteria of algebraic independence with multiplicities and approximation by hypersurfaces. J. Reine Angew. Math. 536 (2001), 65114.
[4]Mahler, K., On a class of entire functions. Acta Math. Acad. Sci. Hungar. 18 (1967), 8396.
[5]Masser, D. W., On polynomials and exponential polynomials in several complex variables. Invent. Math. 63 (1981), 8195.
[6]Nesterenko, Yu. V., Estimates for the orders of zeros of functions of a certain class and their applications in the theory of transcendental numbers. Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), 253284; English transl. in Math. USSR Izv. 11 (1977), 239–270.
[7]Nesterenko, Yu. V., On algebraic independence of algebraic powers of algebraic numbers. Mat. Sb. 123 (1984), 435459; English transl. in Math. USSR Sb. 51 (1985), 429–454.
[8]Philippon, P., Critères pour l’indépendance algébrique. Publ. Math. Inst. Hautes Études Sci. 64 (1986), 552.
[9]Philippon, P., Quatre exposés sur la théorie de l’élimination. Quelques aspects de la théorie de l’élimination, prétirage no. 94-25, Laboratoire de mathématiques discrètes, CNRS, 1994, 2–46. Available at∼pph/DEACIRM93.pdf.
[10]Rémond, G., Élimination multiprojective (Chapter 5) and Géométrie diophantienne multiprojective (Chapter 7). In Introduction to Algebraic Independence Theory (Lecture Notes in Mathematics 1752) (eds Philippon, P. and Nesterenko, Yu.), Springer (New York, 2001).
[11]Roy, D., An arithmetic criterion for the values of the exponential function. Acta Arith. 97 (2001), 183194.
[12]Roy, D., Interpolation formulas and auxiliary functions. J. Number Theory 94 (2002), 248285.
[13]Roy, D., Small value estimates for the multiplicative group. Acta Arith. 135 (2008), 357393.
[14]Roy, D., Small value estimates for the additive group. Int. J. Number Theory 6 (2010), 919956.
[15]Tijdeman, R., An auxiliary result in the theory of transcendental numbers. J. Number Theory 5 (1973), 8094.
MathJax is a JavaScript display engine for mathematics. For more information see

MSC classification

A SMALL VALUE ESTIMATE FOR $\mathbb {G}_{{\textrm{a}}}\times \mathbb {G}_{{\textrm{m}}}$

  • Damien Roy (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed