Skip to main content Accessibility help

The residual set dimension of the Apollonian packing

  • David W. Boyd (a1)


In this paper we show that, for the Apollonian or osculatory packing C0 of a curvilinear triangle T, the dimension d(C0, T) of the residual set is equal to the exponent of the packing e(Co, T) = S. Since we have [5, 6] exhibited constructible sequences λ(K) and μ(K) such that λ(K) < S < μ(K), and μ(K)–λ(K) → 0 as κ → 0, we have thus effectively determined d(C0, T). In practical terms it is thus now known that 1·300197 < d(C0, T) < 1·314534.



Hide All
1. Artin, E., The gamma function (Holt, Rinehart and Winston, 1964).
2. Boyd, D. W., “Oscillatory packings by spheres”, Can. Math. Bull., 13 (1970), 5964.
3. Boyd, D. W., “Lower bounds for the disk packing constant”, Math. Comp., 24 (1970), 697704.
4. Boyd, D. W., “Disk packings which have non-extreme exponents”, Can. Math. Bull., 15 (1972), 341344.
5. Boyd, D. W., “The disk packing constant”, Aeq. Math., 7 (1972), 182193.
6. Boyd, D. W., “Improved bounds for the disk packing constant”, Aeq. Math., 9 (1973), 99106.
7. Eggleston, H. G., “On closest packing by equilateral triangles”, Proc. Camb. Phil. Soc, 49 (1953), 2630.
8. Eggleston, H. G., Problems in Euclidean space, pp. 160165 (Pergamon Press, 1957).
9. Furstenberg, H. and Kesten, H., “Products of random matrices”, Ann. Math. Stat., 31 (1960) 457469.
10. Hirst, K. E., “The Apollonian packing of circles”, Lond. Math. Soc, 42 (1967), 281291.
11. Householder, A. S., The theory of matrices in numerical analysis (Blaisdell, Waltham, Mass., 1964).
12. Larman, D. G., “On the exponent of convergence of a packing of spheres”, Mathematika, 13 (1966), 5759.
13. Larman, D. G., “On the Besicovitch dimension of the residual set of arbitrarily packed disks in the plane”, J. Lond. Math. Soc., 42 (1967), 292302.
14. Melzak, Z. A., “Infinite packings of disks”, Canad. J. Math., 18 (1966), 838852.
15. Pólya, G. and Szegö, G., Aufgaben und Lehrsätze aus der Analysis, 4. Auflage (Springer-Verlag, Berlin, 1970).
16. Schmeling, H. H. K.-B. von and Tschoegl, N. W., “Osculatory packing of finite areas with circles”, Nature, 225 (1970), 11191122.
17. Wilker, J. B., “Open disk packings of a disk”, Can. Math. Bull., 10 (1967), 395415.
18. Wilker, J. B., Almost perfect packings, thesis (Toronto, 1968).
MathJax is a JavaScript display engine for mathematics. For more information see


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed