Skip to main content Accessibility help



We study Piatetski-Shapiro sequences $(\lfloor n^{c}\rfloor )_{n}$ modulo $m$ , for non-integer $c>1$ and positive $m$ , and we are particularly interested in subword occurrences in those sequences. We prove that each block $\in \{0,1\}^{k}$ of length $k<c+1$ occurs as a subword with the frequency $2^{-k}$ , while there are always blocks that do not occur. In particular, those sequences are not normal. For $1<c<2$ , we estimate the number of subwords from above and below, yielding the fact that our sequences are deterministic and not morphic. Finally, using the Daboussi–Kátai criterion, we prove that the sequence $\lfloor n^{c}\rfloor$ modulo $m$ is asymptotically orthogonal to multiplicative functions bounded by 1 and with mean value 0.



Hide All

This work was supported by the Austrian Science Foundation FWF, SFB F5502-N26 “Subsequences of Automatic Sequences and Uniform Distribution”, which is a part of the Special Research Program “Quasi Monte Carlo Methods: Theory and Applications”, by the joint ANR-FWF project ANR-14-CE34-0009, I-1751 MuDeRa, Ciência sem Fronteiras (project PVE 407308/2013-0) and by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No. 648132.



Hide All
1. Alessandri, P. and Berthé, V., Three distance theorems and combinatorics on words. Enseign. Math. (2) 44(1–2) 1998, 103132.
2. Allouche, J.-P. and Shallit, J., Automatic Sequences: Theory, Applications, Generalizations, Cambridge University Press (Cambridge, 2003).10.1017/CBO9780511546563
3. Baker, R. C., Banks, W. D., Brüdern, J., Shparlinski, I. E. and Weingartner, A. J., Piatetski-Shapiro sequences. Acta Arith. 157(1) 2013, 3768.10.4064/aa157-1-3
4. Deshouillers, J.-M., Sur la répartition des nombres [n c ] dans les progressions arithmétiques. C. R. Acad. Sci. Paris Sér. A–B 277 1973, A647A650.
5. Deshouillers, J.-M., Drmota, M. and Morgenbesser, J. F., Subsequences of automatic sequences indexed by ⌊n c ⌋ and correlations. J. Number Theory 132(9) 2012, 18371866.10.1016/j.jnt.2012.03.006
6. Drmota, M. and Tichy, R. F., Sequences, Discrepancies and Applications (Lecture Notes in Mathematics 1651 ), Springer (Berlin, 1997).10.1007/BFb0093404
7. Erdős, P. and Turán, P., On a problem in the theory of uniform distribution. I. Nederl. Akad. Wetensch. Proc. 51 1948, 11461154 = Indag. Math. 10 (1948), 370–378.
8. Graham, S. W. and Kolesnik, G., Van der Corput’s Method of Exponential Sums (London Mathematical Society Lecture Note Series 126 ), Cambridge University Press (Cambridge, 1991).10.1017/CBO9780511661976
9. Kátai, I., A remark on a theorem of H. Daboussi. Acta Math. Hungar. 47(1–2) 1986, 223225.10.1007/BF01949145
10. Koksma, J. F., Some theorems on Diophantine inequalities. Scriptum 5, Mathematisch Centrum Amsterdam, 1950.
11. Lang, S., Introduction to Transcendental Numbers, Addison-Wesley (Reading, MA–London–Don Mills, ON, 1966).
12. Leitmann, D. and Wolke, D., Primzahlen der Gestalt [f (n)]. Math. Z. 145(1) 1975, 8192.10.1007/BF01214500
13. Mauduit, C. and Rivat, J., Propriétés q-multiplicatives de la suite ⌊n c ⌋, c > 1. Acta Arith. 118(2) 2005, 187203.10.4064/aa118-2-6
14. Mauduit, C., Rivat, J. and Sárközy, A., On the pseudo-random properties of n c . Illinois J. Math. 46(1) 2002, 185197.10.1215/ijm/1258136149
15. Mignosi, F., On the number of factors of Sturmian words. Theoret. Comput. Sci. 82(1, Algorithms Automat. Complexity Games) 1991, 7184.10.1016/0304-3975(91)90172-X
16. Müllner, C. and Spiegelhofer, L., Normality of the Thue–Morse sequence along Piatetski-Shapiro sequences, II. Israel J. Math. 220(2) 2017, 691738.10.1007/s11856-017-1531-x
17. Piatetski-Shapiro, I. I., On the distribution of prime numbers in sequences of the form [f (n)]. Mat. Sb. (N.S.) 33(75) 1953, 559566.
18. Ramachandra, K., Contributions to the theory of transcendental numbers. I, II. Acta Arith. 14 1967–1968, 6572; Acta Arith. 14 (1967–1968), 73–88.10.4064/aa-14-1-65-72
19. Rieger, G. J., Uber die natürlichen und primen Zahlen der Gestalt [n c ] in arithmetischer Progression. Arch. Math. (Basel) 18 1967, 3544.10.1007/BF01899471
20. Rivat, J. and Sargos, P., Nombres premiers de la forme ⌊n c . Canad. J. Math. 53(2) 2001, 414433.10.4153/CJM-2001-017-0
21. Sarnak, P., Mobius randomness and dynamics. Not. S. Afr. Math. Soc. 43(2) 2012, 8997.
22. Spiegelhofer, L., The level of distribution of the Thue–Morse sequence. Preprint, 2018, arXiv:1803.01689.
23. Szüsz, P., On a problem in the theory of uniform distribution. In C. R. Premier Congrès Math. Hongrois, Akadémiai Kiadó (Budapest, 1952), 461473; in Hungarian.
MathJax is a JavaScript display engine for mathematics. For more information see

MSC classification

Related content

Powered by UNSILO



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.