Skip to main content Accessibility help
×
×
Home

On the periods of Abelian functions in two variables

  • D. W. Masser (a1)

Extract

Let Λ be a lattice in Cn such that the field of Abelian functions on the quotient space Cn/Λ is of transcendence degree n. This implies that is an algebraic extension of a field o of pure transcendence degree n. Thus there exists a vector A = (A1 …, An) of algebraically independent functions of the variable z = (z1, …, zn) and a function B = B(z), algebraic over

such that

Copyright

References

Hide All
1.Baker, A.. “On the periods of the Weierstrass p–function”, Symposia Math. INDAM Rome, 1968 (Academic Press, London, 1970), 155174.
2.Hardy, G. H. and Wright, E. M.. Introduction to the theory of numbers (Oxford 1938).
3.Lang, S.. Introduction to transcendental numbers (Addison-Wesley, Reading, Mass., 1966).
4.Masser, D. W.. “Linear forms in algebraic points of Abelian functions I, II.” Both to appear in Math. Proc. Cambridge Philos. Soc.
5.Masser, D. W.. “Linear forms in algebraic points of Abelian functions III.” To appear in Proc. London Math. Soc.
6.Schneider, Th.. “Zur Theorie der Abelschen Funktionen und Integrale”, J. reine angew. Math., 183 (1941), 110128.
7.Siegel, C. L.. Topics in complex function theory, Vol. Ill (Wiley-Interscience, New York, 1973).
8.Swinnerton-Dyer, H. P. F.. Analytic theory of Abelian varieties (London Math. Soc. lecture notes 14, Cambridge, 1974).
9.Waldschmidt, M.. Nombres transcendants (Springer-Verlag, Berlin, 1974).
10.Weber, H.. Lehrbuch der Algebra, Vol. Ill (Chelsea Publishing Company, New York, 1958).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematika
  • ISSN: 0025-5793
  • EISSN: 2041-7942
  • URL: /core/journals/mathematika
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed