Skip to main content Accessibility help


  • Yann Bugeaud (a1), Stephen Harrap (a2), Simon Kristensen (a3) and Sanju Velani (a4)


Let A be an n×m matrix with real entries. Consider the set BadA of x∈[0,1)n for which there exists a constant c(x)>0 such that for any q∈ℤm the distance between x and the point {Aq} is at least c(x)|q|m/n. It is shown that the intersection of BadA with any suitably regular fractal set is of maximal Hausdorff dimension. The linear form systems investigated in this paper are natural extensions of irrational rotations of the circle. Even in the latter one-dimensional case, the results obtained are new.



Hide All
[1]Beresnevich, V., Bernik, V., Dodson, M. and Velani, S., Classical metric diophantine approximation revisited. In Analytic Number Theory: Essays in Honour of Klaus Roth, (eds Chen, W., Gowers, T., Halberstam, H., Schmidt, W. M. and Vaughan, R. C.), Cambridge University Press (Cambridge, 2009), 3861.
[2]Beresnevich, V. and Velani, S., A mass transference principle and the Duffin–Schaeffer conjecture for Hausdorff measures. Ann. of Math. (2) 164(3) (2006), 971992.
[3]Bugeaud, Y., A note on inhomogeneous Diophantine approximation. Glasg. Math. J. 45(1) (2003), 105110.
[4]Bugeaud, Y. and Chevallier, N., On simultaneous inhomogeneous Diophantine approximation. Acta Arith. 123(2) (2006), 97123.
[5]Bugeaud, Y. and Laurent, M., On exponents of homogeneous and inhomogeneous Diophantine approximation. Mosc. Math. J. 5(4) (2005), 747766, 972.
[6]Cassels, J. W. S., An Introduction to Diophantine Approximation (Cambridge Tracts in Mathematics and Mathematical Physics 45), Cambridge University Press (New York, 1957).
[7]de Mathan, B., Sur un problème de densité modulo 1. C. R. Acad. Sci. Paris Sér. A–B 287(5) (1978), A277A279.
[8]de Mathan, B., Numbers contravening a condition in density modulo 1. Acta Math. Acad. Sci. Hungar. 36(3–4) (1980), 237241.
[9]Fan, A. H. and Wu, J., A note on inhomogeneous Diophantine approximation with a general error function. Glasg. Math. J. 48(2) (2006), 187191.
[10]Fayad, B., Mixing in the absence of the shrinking target property. Bull. Lond. Math. Soc. 38(5) (2006), 829838.
[11]Hill, R. and Velani, S., Ergodic theory of shrinking targets. Invent. Math. 119 (1995), 175198.
[12]Khinchin, A. Ya., Sur le problème de Tchebycheff. Izv. Akad. Nauk SSSR Ser. Mat. 10 (1946), 281294.
[13]Kim, D. H., The shrinking target property of irrational rotations. Nonlinearity 20(7) (2007), 16371643.
[14]Kleinbock, D. and Weiss, B., Badly approximable vectors on fractals. Israel J. Math. 149 (2005), 137170.
[15]Kristensen, S., Thorn, R. and Velani, S., Diophantine approximation and badly approximable sets. Adv. Math. 203(1) (2006), 132169.
[16]Kurzweil, J., On the metric theory of inhomogeneous diophantine approximations. Studia Math. 15 (1955), 84112.
[17]Mattila, P., Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability (Cambridge Studies in Advanced Mathematics 44), Cambridge University Press (Cambridge, 1995).
[18]Minkowski, H., Über die Annäherung an eine reelle Grösse durch rationale Zahlen. Math. Ann. 54 (1901), 91124 (in German).
[19]Pollington, A. D., On the density of sequence {nkξ}. Illinois J. Math. 23(4) (1979), 511515.
[20]Pollington, A. D. and Velani, S., Metric Diophantine approximation and “absolutely friendly” measures. Selecta Math. (N.S.) 11 (2005), 297307.
[21]Trubetskoĭ, S. and Schmeling, J., Inhomogeneous Diophantine approximations and angular recurrence for billiards in polygons. Mat. Sb. 194(2) (2003), 129144.
[22]Tseng, J., On circle rotations and the shrinking target properties. Discrete Contin. Dyn. Syst. 20(4) (2008), 11111122.
[23]Tseng, J., Three remarks on shrinking target properties. Preprint, 2008, arXiv:0807.3298v1.
[24]Weyl, H., Über die Gleichverteilung von Zahlen mod Eins. Math. Ann. 77(3) (1916), 313352.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0025-5793
  • EISSN: 2041-7942
  • URL: /core/journals/mathematika
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed