Skip to main content Accessibility help
×
Home

On generalized Dedekind domains

  • Muhammad Zafrullah (a1)

Extract

Throughout this note the letters D and K denote a commutative integral domain with 1 and its field of fractions.

Copyright

References

Hide All
1Anderson, D. D. and Anderson, D. F.. Generalized GCD-domains. Comment. Math. Univ. St. Pauli, 23 (1979), 213221.
2Anderson, D. D., Anderson, D. F. and Johnson, E. W.. Some ideal theoretic conditions on a Noetherian ring. Houston J. Math., 7 (1981), 110.
3Anderson, D. D. and Matijevic, J.. Graded ω-rings. Can. J. Math., 31 (3) (1979), 449457.
4Gilmer, R.. Multiplicative Ideal Theory (Marcel Dekker, New York, 1972).
5Griffin, M.. Some results on υ-multiplication rings. Can. J. Math., 19 (1967), 710722.
6Griffin, M.. Rings of Krull type. J. Reine Angew. Math., 229, (1968), 127.
7Helmer, O.. Divisibility properties of integral functions. Duke Math. J., 6 (1940), 345356.
8Henriksen, M.. On the ideal structure of the ring of entire functions. Pacific J. Math., 2 (1952), 179184.
9Jaffard, P.. Les Systemes d”Ideaux (Dunod, Paris, 1960).
10Malik, S., Mott, J. and Zafrullah, M.. On t-invertibility (preprint).
11Querre, J.. Sur une propriete des anneaux de Krull. Bull Sc. Math. 2° serie 95 (1971), 341354.
12Querre, J.. Ideaux divisoriels d'un anneaux de polynomes. J. Alg., 64 (1980), 270284.
13Ribenboim, P.. Anneaux normaux reels a caractere fini. Summa Brasil. Math., 3 (1956), 213253.
14Schilling, O.. The Theory of Valuations, Math. Surveys No. IV (Amer. Math. Soc., 1950).
15Zafrullah, M.. On finite conductor domains. Manuscripta Math., 24 (1978), 191203.
16Zafrullah, M.. The υ-operation and intersections of quotient rings of integral domains. Comm. Algebra, 13 (8) (1985), 16991712.
17Zafrullah, M.. On a property of pre-Schreier domains. To appear in Comm. Algebra.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed