Skip to main content Accessibility help


  • Igor E. Shparlinski (a1)


We give non-trivial bounds for the bilinear sums

$$\begin{eqnarray}\mathop{\sum }_{u=1}^{U}\mathop{\sum }_{v=1}^{V}\unicode[STIX]{x1D6FC}_{u}\unicode[STIX]{x1D6FD}_{v}\,\mathbf{e}_{p}(u/f(v)),\end{eqnarray}$$
where $\,\mathbf{e}_{p}(z)$ is a non-trivial additive character of the prime finite field $\mathbb{F}_{p}$ of $p$ elements, with integers $U$ , $V$ , a polynomial $f\in \mathbb{F}_{p}[X]$ and some complex weights $\{\unicode[STIX]{x1D6FC}_{u}\}$ , $\{\unicode[STIX]{x1D6FD}_{v}\}$ . In particular, for $f(X)=aX+b$ , we obtain new bounds of bilinear sums with Kloosterman fractions. We also obtain new bounds for similar sums with multiplicative characters of $\mathbb{F}_{p}$ .



Hide All
1. Bettin, S. and Chandee, V., Trilinear forms with Kloosterman fractions, Preprint, 2015, arXiv:1502.00769.
2. Bourgain, J., More on the sum-product phenomenon in prime fields and its applications. Int. J. Number Theory 1 2005, 132.
3. Bourgain, J. and Garaev, M. Z., On a variant of sum-product estimates and explicit exponential sum bounds in prime fields. Math. Proc. Cambridge Philos. Soc. 146 2008, 121.
4. Bourgain, J. and Garaev, M. Z., Sumsets of reciprocals in prime fields and multilinear Kloosterman sums. Izv. Math. 78 2014, 656707.
5. Bourgain, J., Konyagin, S. V. and Shparlinski, I. E., Character sums and deterministic polynomial root finding in finite fields. Math. Comp. 43 2015, 42614269.
6. Chang, M.-C., Sparsity of the intersection of polynomial images of an interval. Acta Arith. 165 2014, 243249.
7. Chang, M.-C., Cilleruelo, J., Garaev, M. Z., Hernández, J., Shparlinski, I. E. and Zumalacárregui, A., Points on curves in small boxes and applications. Michigan Math. J. 63 2014, 503534.
8. Chang, M.-C. and Shparlinski, I. E., Double character sums over subgroups and intervals. Bull. Aust. Math. Soc. 90 2014, 376390.
9. Cilleruelo, J. and Garaev, M. Z., Concentration of points on two and three dimensional modular hyperbolas and applications. Geom. Funct. Anal. 21 2011, 892904.
10. Cilleruelo, J., Garaev, M. Z., Ostafe, A. and Shparlinski, I. E., On the concentration of points of polynomial maps and applications. Math. Z. 272 2012, 825837.
11. Cilleruelo, J., Shparlinski, I. E. and Zumalacárregui, A., Isomorphism classes of elliptic curves over a finite field in some thin families. Math. Res. Lett. 19 2012, 335343.
12. Cobeli, C. and Zaharescu, A., Distribution of a sparse set of fractions modulo q . Bull. Lond. Math. Soc. 33 2001, 138148.
13. Davenport, H. and Erdős, P., The distribution of quadratic and higher residues. Publ. Math. Debrecen 2 1952, 252265.
14. Drmota, M. and Tichy, R., Sequences, Discrepancies and Applications, Springer (Berlin, 1997).
15. Gómez-Pérez, D. and Gutierrez, J., On the linear complexity and lattice test of nonlinear pseudorandom number generators. In Applied Algebra and Number Theory, Cambridge University Press (Cambridge, 2014), 91101.
16. Hardy, G. H. and Wright, E. M., An Introduction to the Theory of Numbers, Oxford University Press (Oxford, 1979).
17. Iwaniec, H. and Kowalski, E., Analytic Number Theory, American Mathematical Society (Providence, RI, 2004).
18. Karatsuba, A. A., The distribution of values of Dirichlet characters on additive sequences. Dokl. Acad. Sci. USSR 319 1991, 543545; (in Russian).
19. Kerr, B., Solutions to polynomial congruences in well shaped sets. Bull. Aust. Math. Soc. 88 2013, 435447.
20. Moreno, C. J. and Moreno, O., Exponential sums and Goppa codes, 1. Proc. Amer. Math. Soc. 111 1991, 523531.
21. Shao, X., Character sums over unions of intervals. Forum Math. 27 2015, 30173026.
22. Shparlinski, I. E., Exponential sums with Farey fractions. Bull. Pol. Acad. Sci. Math. 57 2009, 101107.
23. Shparlinski, I. E., Close values of shifted modular inversions and the decisional modular inversion hidden number problem. Adv. Math. Commun. 9 2015, 169176.
24. Shparlinski, I. E., Linear congruences with ratios. Proc. Amer. Math. Soc. 144 2016, 28372846.
25. Vinogradov, I. M., The Method of Trigonometrical Sums in the Theory of Numbers (Proceedings of the Steklov Institute of Mathematics 23 ), Acad. Sci. USSR (Moscow–Leningrad, 1947).
26. Wooley, T. D., Translation invariance, exponential sums, and Warings problem. In Proceedings of the International Congress of Mathematicians (Seoul 2014), Kyung Moon (Seoul, 2014), 505529.
27. Zaharescu, A., Averages of short exponential sums. Acta Arith. 88 1999, 223231.
28. Zaharescu, A., Averages of short exponential sums, II. Acta Arith. 100 2001, 339348.
MathJax is a JavaScript display engine for mathematics. For more information see

MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed