Skip to main content Accessibility help
×
Home

NEGATIVE VALUES OF THE RIEMANN ZETA FUNCTION ON THE CRITICAL LINE

  • Justas Kalpokas (a1), Maxim A. Korolev (a2) and Jörn Steuding (a3)

Abstract

We investigate the intersections of the curve $ \mathbb{R} \ni t\mapsto \zeta (\frac{1}{2} + \mathrm{i} t)$ with the real axis. We show unconditionally that the zeta function takes arbitrarily large positive and negative values on the critical line.

Copyright

References

Hide All
1.Christ, T. and Kalpokas, J., Upper bounds for discrete moments of the derivatives of the Riemann zeta-function on the critical line. Lith. Math. J. 52 (3) (2012), 233248.
2.Edwards, H. M., Riemann’s Zeta Function, Academic Press (New York, 1974).
3.Heath-Brown, D. R., Fractional moments of the Riemann zeta-function. J. Lond. Math. Soc. (2) 24 (1981), 6578.
4.Gonek, S. M., Mean values of the Riemann zeta-function and its derivatives. Invent. Math. 75 (1) (1984), 123141.
5.Gram, J., Sur les zéros de la fonction $\zeta (s)$ de Riemann. Acta Math. 27 (1903), 289304.
6.Israilov, M. I., On the Laurent expansion of the Riemann zeta-function. Proc. Steklov Inst. Math. 158 (1983), 105112.
7.Ivić, A., The Riemann Zeta-Function, John Wiley & Sons (New York, 1985).
8.Kalpokas, J. and Steuding, J., On the value-distribution of the Riemann zeta-function on the critical line. Mosc. J. Combin. Number Theory 1 (2011), 2642.
9.Milinovich, M. B. and Ng, N., Lower bounds for moments of ${\zeta }^{\prime } (\rho )$, Int. Math. Res. Not. (2013), doi:10.1093/imrn/rnt028.
10.Ng, N., A discrete mean value of the derivative of the Riemann zeta function. Mathematika 54 (2007), 113155.
11.Rudnick, Z. and Soundararajan, K., Lower bounds for moments of L-functions. Proc. Natl. Sci. Acad. USA 102 (2005), 68376838.
12.Soundararajan, K., Extreme values of zeta and L-functions. Math. Ann. 342 (2008), 467486.
13.Titchmarsh, E. C., On van der Corput’s method and the zeta-function of Riemann, IV. Quart. J. Math. 5 (1934), 98105.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

MSC classification

NEGATIVE VALUES OF THE RIEMANN ZETA FUNCTION ON THE CRITICAL LINE

  • Justas Kalpokas (a1), Maxim A. Korolev (a2) and Jörn Steuding (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed