Skip to main content Accessibility help
×
×
Home

LARGE VALUES OF $L(1,\unicode[STIX]{x1D712})$ FOR $k$ TH ORDER CHARACTERS $\unicode[STIX]{x1D712}$ AND APPLICATIONS TO CHARACTER SUMS

  • Youness Lamzouri (a1)

Abstract

For any given integer $k\geqslant 2$ we prove the existence of infinitely many $q$ and characters $\unicode[STIX]{x1D712}\,(\text{mod}\;q)$ of order $k$ such that $|L(1,\unicode[STIX]{x1D712})|\geqslant (\text{e}^{\unicode[STIX]{x1D6FE}}+o(1))\log \log q$ . We believe this bound to be the best possible. When the order $k$ is even, we obtain similar results for $L(1,\unicode[STIX]{x1D712})$ and $L(1,\unicode[STIX]{x1D712}\unicode[STIX]{x1D709})$ , where $\unicode[STIX]{x1D712}$ is restricted to even (or odd) characters of order $k$ and $\unicode[STIX]{x1D709}$ is a fixed quadratic character. As an application of these results, we exhibit large even-order character sums, which are likely to be optimal.

Copyright

References

Hide All
1. Baier, S. and Young, M. P., Mean values with cubic characters. J. Number Theory 130(4) 2010, 879903.
2. Bateman, P. T. and Chowla, S., Averages of character sums. Proc. Amer. Math. Soc. 1 1950, 781787.
3. Blomer, V., Goldmakher, L. and Louvel, B., L-functions with nth-order twists. Int. Math. Res. Not. IMRN 2014(7), 19251955.
4. Bober, J., Averages of character sums. Preprint, 2014, arXiv:1409.1840.
5. Bober, J., Goldmakher, L., Granville, A. and Koukoulopoulos, D., The frequency and the structure of large character sums. Preprint, 2014, arXiv:1410.8189.
6. Chowla, S., Improvement of a theorem of Linnik and Walfisz. Proc. Lond. Math. Soc. (3) 50 1949, 423429.
7. Elliott, P. D. T. A., On the mean value of f (p). Proc. Lond. Math. Soc. (3) 21 1970, 2896.
8. Gao, P. and Zhao, L., Large sieve inequalities for quartic characters. Q. J. Math. 63(4) 2012, 891917.
9. Goldmakher, L., Multiplicative mimicry and improvements to the Pólya–Vinogradov inequality. Algebr. Number Theory 6(1) 2012, 123163.
10. Goldmakher, L. and Lamzouri, Y., Lower bounds on odd order character sums. Int. Math. Res. Not. IMRN 2012 (21) 2012, 50065013.
11. Goldmakher, L. and Lamzouri, Y., Large even order character sums. Proc. Amer. Math. Soc. 142(8) 2014, 26092614.
12. Granville, A. and Soundararajan, K., The distribution of values of L (1, 𝜒 d ). Geom. Funct. Anal. 13(5) 2003, 9921028.
13. Granville, A. and Soundararajan, K., Extreme values of |𝜁(1 + it)|. In The Riemann Zeta Function and Related Themes: Papers in Honour of Professor K. Ramachandra (Ramanujan Mathematical Society Lecture Notes Series 2 ), Ramanujan Mathematical Society (Mysore, 2006), 6580.
14. Granville, A. and Soundararajan, K., Large character sums: pretentious characters and the Pólya–Vinogradov theorem. J. Amer. Math. Soc. 20(2) 2007, 357384.
15. Heath-Brown, D. R., Kummer’s conjecture for cubic Gauss sums. Israel J. Math. 120(part A) 2000, 97124.
16. Littlewood, J. E., On the class number of the corpus P (√-k). Proc. Lond. Math. Soc. (3) 27 1928, 358372.
17. Montgomery, H. L. and Vaughan, R. C., Exponential sums with multiplicative coefficients. Invent. Math. 43(1) 1977, 6982.
18. Montgomery, H. L. and Vaughan, R. C., Extreme values of Dirichlet L-functions at 1. In Number Theory in Progress, Vol. 2 (Zakopane-Kościelisko, 1997), de Gruyter (Berlin, 1999), 10391052.
19. Montgomery, H. L. and Vaughan, R. C., Multiplicative Number Theory. I. Classical Theory (Cambridge Studies in Advanced Mathematics 97 ), Cambridge University Press (Cambridge, 2007).
20. Paley, R. E. A. C., A theorem on characters. J. Lond. Math. Soc. (2) 7 1932, 2832.
21. Pólya, G., Uber die Verteilung der quadratischen Reste und Nichtreste. Göttingen Nachrichten 1918, 2129.
22. Vinogradov, I. M., Uber die Verteilung der quadratischen Reste und Nichtreste. J. Soc. Phys. Math. Univ. Permi (2) 1919, 114.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematika
  • ISSN: 0025-5793
  • EISSN: 2041-7942
  • URL: /core/journals/mathematika
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed