Skip to main content Accessibility help
×
Home

INVERSE SPECTRAL THEORY FOR A CLASS OF NON-COMPACT HANKEL OPERATORS

  • Patrick Gérard (a1) and Alexander Pushnitski (a2)

Abstract

We characterize all bounded Hankel operators $\unicode[STIX]{x1D6E4}$ such that $\unicode[STIX]{x1D6E4}^{\ast }\unicode[STIX]{x1D6E4}$ has finite spectrum. We identify spectral data corresponding to such operators and construct inverse spectral theory including the characterization of these spectral data.

Copyright

References

Hide All
1. Gérard, P., Wave turbulence and complete integrability, lectures at Fields Institute, summer school on non-linear dispersive PDEs and inverse scattering, Fields Institute, August 2017.
2. Gérard, P. and Grellier, S., The cubic Szegő equation. Ann. Sci. Éc. Norm. Supér. (4) 43 2010, 761810.
3. Gérard, P. and Grellier, S., Invariant tori for the cubic Szegő equation. Invent. Math. 187(3) 2012, 707754.
4. Gérard, P. and Grellier, S., The cubic Szegő equation and Hankel operators. Astérisque 389 2017.
5. Gérard, P. and Grellier, S., Inverse spectral problems for compact Hankel operators. J. Inst. Math. Jussieu 13 2014, 273301.
6. Gérard, P. and Pushnitski, A., An inverse problem for self-adjoint positive Hankel operators. Int. Math. Res. Not. IMRN 13 2015, 45054535.
7. Gérard, P. and Pushnitski, A., Weighted model spaces and Schmidt subspaces of Hankel operators. Preprint, 2018, arXiv:1803.04295.
8. Nikolski, N. K., Operators, Functions, and Systems: An Easy Reading, Vol. 1: Hardy, Hankel, and Toeplitz (Mathematical Surveys and Monographs 92 ), American Mathematical Society (Providence, RI, 2002).
9. Peller, V. V., Hankel Operators and their Applications, Springer (2003).
10. Pocovnicu, O., Explicit formula for the solution of the Szegő equation on the real line and applications. Discrete Contin. Dyn. Syst. A 31 2011, 607649.
11. Megretskiĭ, A. V., Peller, V. V. and Treil, S. R., The inverse spectral problem for self-adjoint Hankel operators. Acta Math. 174(2) 1995, 241309.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

MSC classification

INVERSE SPECTRAL THEORY FOR A CLASS OF NON-COMPACT HANKEL OPERATORS

  • Patrick Gérard (a1) and Alexander Pushnitski (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed