1.
Alfonseca, M. A., Auscher, P., Axelsson, A., Hofmann, S. and Kim, S., Analyticity of layer potentials and *L*
^{2} solvability of boundary value problems for divergence form elliptic equations with complex *L*
^{
∞
} coefficients. Adv. Math.
226
2011, 4533–4606.

2.
Auscher, P., Hofmann, S., Lacey, M., McIntosh, A. and Tchamitchian, P., The solution of the Kato square root problem for second order elliptic operators on ℝ^{
n
}
. Ann. of Math. (2)
156
2002, 633–654.

3.
Auscher, P., Hofmann, S., Muscalu, C., Tao, T. and Thiele, C., Carleson measures, trees, extrapolation, and *T* (*b*) theorems. Publ. Mat.
46(2) 2002, 257–325.

4.
Auscher, P. and Routin, E., Local *Tb* theorems and Hardy inequalities. J. Geom. Anal.
13
2013, 303–374.

5.
Auscher, P. and Tchamitchian, P., Square Root Problem for Divergence Operators and Related Topics
(*Astérisque ***249**
), Société Mathématique de France (1998).

6.
Auscher, P. and Yang, Q. X., BCR algorithm and the *T* (*b*) theorem. Publ. Mat.
53(1) 2009, 179–196.

7.
Christ, M., A *T* (*b*) theorem with remarks on analytic capacity and the Cauchy integral. Colloq. Math.
LX–LXI
1990, 601–628.

8.
Christ, M. and Journé, J.-L., Polynomial growth estimates for multilinear singular integral operators. Acta Math.
159(1–2) 1987, 51–80.

9.
Cruz-Uribe, D., Martell, J. M and Pérez, C., Weights, Extrapolation and the Theory of Rubio de Francia
(*Operator Theory: Advances and Applications ***215**
), Birkhäuser/Springer (Basel, 2011).

10.
David, G., Journé, J.-L. and Semmes, S., Opérateurs de Calderón–Zygmund, fonctions para-accrétives et interpolation. Rev. Mat. Iberoam.
1
1985, 1–56.

11.
Duoandikoetxea, J. and Rubio de Francia, J. L., Maximal and singular integral operators via Fourier transform estimates. Invent. Math.
84
1986, 541–561.

12.
Grau de la Herrán, A. and Hofmann, S., A local *Tb* theorem with vector-valued testing functions. In Some Topics in Harmonic Analysis and Applications (special volume in honor of Shanzhen Lu)
(*Advanced Lectures in Mathematics ***34**
) (eds Li, J., Li, X. and Lu, G.), International Press (Boston, MA, 2016).

13.
Grau de la Herrán, A. and Mourgoglou, M., A *Tb* theorem for square functions in domains with Ahlfors–David regular boundaries. J. Geom. Anal.
24
2014, 1619–1640.

14.
Hofmann, S., Local
$\mathit{Tb}$
theorems for square functions and application in PDE. *Proc. ICM (Madrid, 2006)*.
15.
Hofmann, S., A proof of the local
$\mathit{Tb}$
theorem for standard Calderon–Zygmund operators. *Preprint*, 2007, arXiv:0705.0840.2.
16.
Hofmann, S., A local *Tb* theorem for square functions. In Perspectives in Partial Differential Equations, Harmonic Analysis and Applications
(*Proceedings of Symposia in Pure Mathematics ***79**
), American Mathematical Society (Providence, RI, 2008), 175–185.

17.
Hofmann, S., Local *T* (*b*) theorems and application in PDE. In Harmonic Analysis and Partial Differential Equations 29–52
(*Contemporary Mathematics ***505**
), American Mathematical Society (Providence, RI, 2010).

18.
Hofmann, S., Lacey, M. and McIntosh, A., The solution of the Kato problem for divergence form elliptic operators with Gaussian heat kernel bounds. Ann. of Math. (2)
156
2002, 623–631.

19.
Hofmann, S. and Martell, J. M., Uniform rectifiability and harmonic measure I: uniform rectifiability implies Poisson kernels in *L*
^{
p
}
. Ann. Sci. Éc. Norm. Supér.
47
2014, 577–654.

20.
Hofmann, S., Martell, J. M. and Uriarte-Tuero, I., Uniform rectifiability and harmonic measure II: Poisson kernels in *L*
^{
p
} imply uniform rectfiability. Duke Math. J.
163
2014, 1601–1654.

21.
Hofmann, S. and McIntosh, A., The solution of the Kato problem in two dimensions. *Proc. Conf. Harmonic Analysis and PDE (El Escorial, Spain, July 2000, Publ. Mat.*
**extra volume** (2002), 143–160.

22.
Hofmann, S. and McIntosh, A., Boundedness and applications of singular integrals and square functions: a survey. Bull. Math. Sci.
1
2011, 201–244.

23.
Hytönen, T. and Martikainen, H., On general local *Tb* theorems. Trans. Amer. Math. Soc.
364
2012, 4819–4846.

24.
Hytönen, T. and Nazarov, F., The local
$\mathit{Tb}$
theorem with rough test functions. *Preprint*, 2012, arXiv:1206.0907.
25.
Lacey, M. and Martikainen, H., Local *Tb* theorem with L2 testing conditions and general measures: Calderón–Zygmund operators. Ann. Sci. Éc. Norm. Supér.
49
2016, 57–86.

26.
Lacey, M. and Martikainen, H., Local *Tb* theorem with L2 testing conditions and general measures: square functions. J. Anal. Math. (to appear), arXiv:1308.4571.
27.
Martikainen, H. and Mourgoglou, M., Boundedness of non-homogeneous square functions and *L*
^{
q
} type testing conditions with *q* in (1, 2). Math. Res. Lett.
22
2015, 1417–1457.

28.
McIntosh, A. and Meyer, Y., Algèbres dopérateurs définis par des intégrales singulières. C. R. Acad. Sci. Paris
301(1) 1985, 395–397.

29.
Meyers, N. G., An *L*
^{
p
} estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Sc. Norm. Super. Pisa Cl. Sci.
17
1963, 189–206.

30.
Nazarov, F., Treil, S. and Volberg, A., Accretive system *Tb* -theorems on nonhomogeneous spaces. Duke Math. J.
113(2) 2002, 259–312.

31.
Semmes, S., Square function estimates and the *T* (*b*) theorem. Proc. Amer. Math. Soc.
110(3) 1990, 721–726.

32.
Stein, E. M. and Weiss, G., Interpolation of operators with change of measures. Trans. Amer. Math. Soc.
87
1958, 159–172.

33.
Tan, C. and Yan, L., Local *Tb* theorem on spaces of homogeneous type. Z. Anal. Anwend.
28(3) 2009, 333–347.