Skip to main content Accessibility help
×
×
Home

GENERALIZED LOCAL $\mathit{Tb}$ THEOREMS FOR SQUARE FUNCTIONS

  • Ana Grau De La Herrán (a1) and Steve Hofmann (a2)

Abstract

A local $\mathit{Tb}$ theorem is an $L^{2}$ boundedness criterion by which the question of the global behavior of an operator is reduced to its local behavior, acting on a family of test functions $b_{Q}$ indexed by the dyadic cubes. We present two versions of such results, in particular, treating square function operators whose kernels do not satisfy the standard Littlewood–Paley pointwise estimates. As an application of one version of the local $\mathit{Tb}$ theorem, we show how the solvability of the Kato problem (which was implicitly based on local $\mathit{Tb}$ theory) may be deduced from this general criterion.

Copyright

References

Hide All
1. Alfonseca, M. A., Auscher, P., Axelsson, A., Hofmann, S. and Kim, S., Analyticity of layer potentials and L 2 solvability of boundary value problems for divergence form elliptic equations with complex L coefficients. Adv. Math. 226 2011, 45334606.
2. Auscher, P., Hofmann, S., Lacey, M., McIntosh, A. and Tchamitchian, P., The solution of the Kato square root problem for second order elliptic operators on ℝ n . Ann. of Math. (2) 156 2002, 633654.
3. Auscher, P., Hofmann, S., Muscalu, C., Tao, T. and Thiele, C., Carleson measures, trees, extrapolation, and T (b) theorems. Publ. Mat. 46(2) 2002, 257325.
4. Auscher, P. and Routin, E., Local Tb theorems and Hardy inequalities. J. Geom. Anal. 13 2013, 303374.
5. Auscher, P. and Tchamitchian, P., Square Root Problem for Divergence Operators and Related Topics (Astérisque 249 ), Société Mathématique de France (1998).
6. Auscher, P. and Yang, Q. X., BCR algorithm and the T (b) theorem. Publ. Mat. 53(1) 2009, 179196.
7. Christ, M., A T (b) theorem with remarks on analytic capacity and the Cauchy integral. Colloq. Math. LX–LXI 1990, 601628.
8. Christ, M. and Journé, J.-L., Polynomial growth estimates for multilinear singular integral operators. Acta Math. 159(1–2) 1987, 5180.
9. Cruz-Uribe, D., Martell, J. M and Pérez, C., Weights, Extrapolation and the Theory of Rubio de Francia (Operator Theory: Advances and Applications 215 ), Birkhäuser/Springer (Basel, 2011).
10. David, G., Journé, J.-L. and Semmes, S., Opérateurs de Calderón–Zygmund, fonctions para-accrétives et interpolation. Rev. Mat. Iberoam. 1 1985, 156.
11. Duoandikoetxea, J. and Rubio de Francia, J. L., Maximal and singular integral operators via Fourier transform estimates. Invent. Math. 84 1986, 541561.
12. Grau de la Herrán, A. and Hofmann, S., A local Tb theorem with vector-valued testing functions. In Some Topics in Harmonic Analysis and Applications (special volume in honor of Shanzhen Lu) (Advanced Lectures in Mathematics 34 ) (eds Li, J., Li, X. and Lu, G.), International Press (Boston, MA, 2016).
13. Grau de la Herrán, A. and Mourgoglou, M., A Tb theorem for square functions in domains with Ahlfors–David regular boundaries. J. Geom. Anal. 24 2014, 16191640.
14. Hofmann, S., Local $\mathit{Tb}$ theorems for square functions and application in PDE. Proc. ICM (Madrid, 2006).
15. Hofmann, S., A proof of the local $\mathit{Tb}$ theorem for standard Calderon–Zygmund operators. Preprint, 2007, arXiv:0705.0840.2.
16. Hofmann, S., A local Tb theorem for square functions. In Perspectives in Partial Differential Equations, Harmonic Analysis and Applications (Proceedings of Symposia in Pure Mathematics 79 ), American Mathematical Society (Providence, RI, 2008), 175185.
17. Hofmann, S., Local T (b) theorems and application in PDE. In Harmonic Analysis and Partial Differential Equations 29–52 (Contemporary Mathematics 505 ), American Mathematical Society (Providence, RI, 2010).
18. Hofmann, S., Lacey, M. and McIntosh, A., The solution of the Kato problem for divergence form elliptic operators with Gaussian heat kernel bounds. Ann. of Math. (2) 156 2002, 623631.
19. Hofmann, S. and Martell, J. M., Uniform rectifiability and harmonic measure I: uniform rectifiability implies Poisson kernels in L p . Ann. Sci. Éc. Norm. Supér. 47 2014, 577654.
20. Hofmann, S., Martell, J. M. and Uriarte-Tuero, I., Uniform rectifiability and harmonic measure II: Poisson kernels in L p imply uniform rectfiability. Duke Math. J. 163 2014, 16011654.
21. Hofmann, S. and McIntosh, A., The solution of the Kato problem in two dimensions. Proc. Conf. Harmonic Analysis and PDE (El Escorial, Spain, July 2000, Publ. Mat. extra volume (2002), 143–160.
22. Hofmann, S. and McIntosh, A., Boundedness and applications of singular integrals and square functions: a survey. Bull. Math. Sci. 1 2011, 201244.
23. Hytönen, T. and Martikainen, H., On general local Tb theorems. Trans. Amer. Math. Soc. 364 2012, 48194846.
24. Hytönen, T. and Nazarov, F., The local $\mathit{Tb}$ theorem with rough test functions. Preprint, 2012, arXiv:1206.0907.
25. Lacey, M. and Martikainen, H., Local Tb theorem with L2 testing conditions and general measures: Calderón–Zygmund operators. Ann. Sci. Éc. Norm. Supér. 49 2016, 5786.
26. Lacey, M. and Martikainen, H., Local Tb theorem with L2 testing conditions and general measures: square functions. J. Anal. Math. (to appear), arXiv:1308.4571.
27. Martikainen, H. and Mourgoglou, M., Boundedness of non-homogeneous square functions and L q type testing conditions with q in (1, 2). Math. Res. Lett. 22 2015, 14171457.
28. McIntosh, A. and Meyer, Y., Algèbres dopérateurs définis par des intégrales singulières. C. R. Acad. Sci. Paris 301(1) 1985, 395397.
29. Meyers, N. G., An L p estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. 17 1963, 189206.
30. Nazarov, F., Treil, S. and Volberg, A., Accretive system Tb -theorems on nonhomogeneous spaces. Duke Math. J. 113(2) 2002, 259312.
31. Semmes, S., Square function estimates and the T (b) theorem. Proc. Amer. Math. Soc. 110(3) 1990, 721726.
32. Stein, E. M. and Weiss, G., Interpolation of operators with change of measures. Trans. Amer. Math. Soc. 87 1958, 159172.
33. Tan, C. and Yan, L., Local Tb theorem on spaces of homogeneous type. Z. Anal. Anwend. 28(3) 2009, 333347.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematika
  • ISSN: 0025-5793
  • EISSN: 2041-7942
  • URL: /core/journals/mathematika
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed