Skip to main content Accessibility help
×
Home

FRACTIONAL SOBOLEV–POINCARÉ AND FRACTIONAL HARDY INEQUALITIES IN UNBOUNDED JOHN DOMAINS

  • Ritva Hurri-Syrjänen (a1) and Antti V. Vähäkangas (a2)

Abstract

We prove fractional Sobolev–Poincaré inequalities in unbounded John domains and we characterize fractional Hardy inequalities there.

Copyright

References

Hide All
1.Dyda, B., A fractional order Hardy inequality. Illinois J. Math. 48 2004, 575588.
2.Dyda, B., Ihnatsyeva, L. and Vähäkangas, A. V., On improved fractional Sobolev–Poincaré inequalities, Preprint, 2013, arXiv:1312.5118.
3.Dyda, B. and Vähäkangas, A. V., A framework for fractional Hardy inequalities. Ann. Acad. Sci. Fenn. Math. 39 2014, 675689.
4.Dyda, B. and Vähäkangas, A. V., Characterizations for fractional Hardy inequality. Adv. Calc. Var. 2014, http://dx.doi.org/10.1515/acv-2013-0019.
5.Edmunds, D. E. and Hurri-Syrjänen, R., The improved Hardy inequality. Houston J. Math. 37 2011, 929937.
6.Edmunds, D. E., Hurri-Syrjänen, R. and Vähäkangas, A. V., Fractional Hardy-type inequalities in domains with uniformly fat complement. Proc. Amer. Math. Soc. 142 2014, 897907.
7.Franchi, B., Perés, C. and Wheeden, R. L., Self-improving properties of John–Nirenberg and Poincaré inequalities on spaces of homogeneous type. J. Funct. Anal. 153 1998, 109146.
8.Heikkinen, T., Koskela, P. and Tuominen, H., Sobolev-type spaces from generalized Poincaré inequalities. Studia Math. 181 2007, 116.
9.Hurri-Syrjänen, R., Unbounded Poincaré domains. Ann. Acad. Sci. Fenn. Ser. A I. Math. 17 1992, 409423.
10.Hurri-Syrjänen, R., Marola, N. and Vähäkangas, A. V., Aspects of local to global results. Bull. Lond. Math. Soc. 46(5) 2014, 10321042.
11.Hurri-Syrjänen, R. and Vähäkangas, A. V., On fractional Poincaré inequalities. J. Anal. Math. 120 2013, 85104.
12.Maz’ya, V., Sobolev Spaces with Applications to Elliptic Partial Differential Equations, 2nd revised and augmented edn. (A Series of Comprehensive Studies in Mathematics 342), Springer (Heidelberg, Dordrecht, London, New York, 2011).
13.Stein, E. M., Singular Integrals and Differentiability Properties of Functions, Princeton University Press (Princeton, NJ, 1970).
14.Väisälä, J., Exhaustions of John domains. Ann. Acad. Sci. Fenn. Ser. A I. Math. 19 1994, 4757.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed