Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-17T16:37:28.873Z Has data issue: false hasContentIssue false

EMBEDDING OF THE FREE ABELIAN TOPOLOGICAL GROUP $A(X\oplus X)$ INTO $A(X)$

Published online by Cambridge University Press:  17 April 2019

Mikołaj Krupski
Affiliation:
Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A. Institute of Mathematics, University of Warsaw, ul. Banacha 2, 02-097 Warszawa, Poland email mkrupski@mimuw.edu.pl
Arkady Leiderman
Affiliation:
Department of Mathematics, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva, Israel email arkady@math.bgu.ac.il
Sidney Morris
Affiliation:
School of Science, Engineering and Information Technology, Federation University Australia, PO Box 663, Ballarat, Victoria, 3353, Australia Department of Mathematics and Statistics, La Trobe University, Melbourne, Victoria, 3086, Australia email morris.sidney@gmail.com
Get access

Abstract

We consider the following question: for which metrizable separable spaces $X$ does the free abelian topological group $A(X\oplus X)$ isomorphically embed into $A(X)$. While for many natural spaces $X$ such an embedding exists, our main result shows that if $X$ is a Cook continuum or $X$ is a rigid Bernstein set, then $A(X\oplus X)$ does not embed into $A(X)$ as a topological subgroup. The analogous statement is true for the free boolean group $B(X)$.

Type
Research Article
Copyright
Copyright © University College London 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arkhangel’skii, A. V., Topological Spaces and Continuous Mappings. Remarks on Topological Groups, Moscow University (1969) (in Russian).Google Scholar
Arkhangel’skii, A. V., Problems in C p -theory. In Open Problems in Topology (eds van Mill, J. and Reed, G. M.), North-Holland (Amsterdam, 1990), 601615.Google Scholar
Arhangel’skii, A. V. and Tkachenko, M. G., Topological Groups and Related Structures (Atlantis Series in Mathematics I ), Atlantis Press and World Scientific (Paris and Amsterdam, 2008).Google Scholar
Baars, J., Equivalence of certain free topological groups. Comment. Math. Univ. Carolin. 33 1992, 125130.Google Scholar
Cook, H., Continua which admit only the identity mapping onto non-degenerate subcontinua. Fund. Math. 60 1967, 241249.Google Scholar
Cornette, J. L., Retracts of the pseudo-arc. Colloq. Math. 19 1968, 235239.Google Scholar
Gartside, P. and Feng, Z., Spaces l-dominated by I or R . Topology Appl. 219 2017, 18.Google Scholar
Górak, R., Krupski, M. and Marciszewski, W., On uniformly continuous maps between function spaces. Fund. Math. (2019, in press).Google Scholar
Graev, M. I., Free topological groups. Amer. Math. Soc. Transl. 1(8) 1962, 305364.Google Scholar
Hardy, J. P. L., Morris, S. A. and Thompson, H. B., Applications of the Stone–C̆ech compactification to free topological groups. Proc. Amer. Math. Soc. 55 1976, 160164.Google Scholar
Hart, K. P., Nagata, J. and Vaughan, J. E., Encyclopedia of General Topology, Elsevier Science (Amsterdam, 2004).Google Scholar
Joiner, C., Free topological groups and dimension. Trans. Amer. Math. Soc. 220 1976, 401418.Google Scholar
Kawamura, K. and Leiderman, A., Linear continuous surjections of C p (X)-spaces over compacta. Topology Appl. 227 2017, 135145.Google Scholar
Krupski, M. and Marciszewski, W., A metrizable X with C p (X) not homeomorphic to C p (X) × C p (X). Israel J. Math. 214 2016, 245258.Google Scholar
Kuratowski, K., Topology, Vol. II, Academic Press and PWN (New York–London–Warsaw, 1968).Google Scholar
Leiderman, A., Levin, M. and Pestov, V., On linear continuous open surjections of the spaces C p (X). Topology Appl. 81 1997, 269279.Google Scholar
Leiderman, A., Morris, S. and Pestov, V., The free abelian topological group and the free locally convex space on the unit interval. J. Lond. Math. Soc. (2) 56 1997, 529538.Google Scholar
Lewis, W., The pseudo-arc. Bol. Soc. Mat. Mexicana (3) 5 1999, 2577.Google Scholar
Mack, J., Morris, S. A. and Ordman, E. T., Free topological groups and the projective dimension of a locally compact abelian group. Proc. Amer. Math. Soc. 40 1973, 303308.Google Scholar
Markov, A. A., On free topological groups. Amer. Math. Soc. Transl. 1(8) 1962, 195272.Google Scholar
Matrai, T., A characterization of spaces l-equivalent to the unit interval. Topology Appl. 138 2004, 299314.Google Scholar
Morris, S. A., Varieties of topological groups and adjoint functors. J. Aust. Math. Soc. 16 1973, 220227.Google Scholar
Morris, S. A., Free abelian topological groups. In Proc. Int. Conf. Categorical Topology (Toledo, Ohio, 1983), Heldermann (Berlin, 1984), 375391.Google Scholar
Nickolas, P., Subgroups of the free topological group on [0, 1]. J. Lond. Math. Soc. (2) 12 1976, 199205.Google Scholar
Okunev, O. G., A method for constructing examples of M-equivalent spaces. Topology Appl. 36 1990, 157171.Google Scholar
Pavlovskiǐ, D., On spaces of continuous functions. Soviet Math. Dokl. 22 1980, 3437.Google Scholar
Pestov, V., The coincidence of the dimension dim of -equivalent topological spaces. Soviet Math. Dokl. 28 1982, 380383.Google Scholar
Pol, R., On metrizable E with C p (E) ≇ C p (E) × C p (E). Mathematika 42 1995, 4955.Google Scholar
Raikov, D. A., Free locally convex space for uniform spaces. Mat. Sb. 63 1964, 582590.Google Scholar
Sipacheva, O., Free Boolean topological groups. Axioms 4 2015, 492517.Google Scholar
Thomas, B. V. S., Free topological groups. Gen. Topol. Appl. 4 1974, 5172.Google Scholar
van Mill, J., The Infinite-Dimensional Topology of Function Spaces, Proc. Int. Conf. Categorical Topology (North-Holland Mathematical Library 64 ), North-Holland (Amsterdam, 2001).Google Scholar