Skip to main content Accessibility help


  • Alexander B. Movchan (a1), Michele Brun (a2) (a3), Leonid I. Slepyan (a4) and Gian F. Giaccu (a5) (a6)


This paper presents a model of a 1D–1D dynamic multi-structure, supporting propagation of a transition wave. It is used to explain the recent phenomenon of the collapse of the San Saba bridge. An analytical model is supplied with illustrative numerical simulations.



Hide All
1.Brun, M., Giaccu, G. F., Movchan, A. B. and Movchan, N. V., Asymptotics of eigenfrequencies in the dynamic response of elongated multi-structures. Proc. R. Soc. Lond. Ser. A 468 2012, 378394, doi:10.1098/rspa.2011.0415.
2.Brun, M., Movchan, A. B. and Jones, I. S., Phononic band gap systems in structural mechanics: finite slender elastic structures and infinite periodic waveguides. J. Vib. Acous. 135(4) 2013, 041013, doi:10.1115/1.4023819.
3.Brun, M., Movchan, A. B., Jones, I. S. and McPhedran, R. C., Bypassing shake, rattle and roll. Phys. World 26(5) 2013, 3236.
4.Brun, M., Movchan, A. B. and Slepyan, L. I., Transition wave in a supported heavy beam. J. Mech. Phys. Solids 61(10) 2013, 20672085, doi:10.1016/j.jmps.2013.05.004.
5.Ciarlet, P. G., Plates and Junctions in Elastic Multi-Structures: An Asymptotic Analysis, Masson and Springer (Paris and Heidelberg, 1990).
6.Ciarlet, P. G., Mathematical Elasticity, Vol. II: Theory of Plates (Studies in Mathematics and its Applications), North-Holland (Amsterdam, 1997).
7.Kozlov, V. A., Maz’ya, V. G. and Movchan, A. B., Asymptotic Analysis of Fields in Multi-Structures, Oxford University Press (Oxford, 1999).
8.Le Dret, H., Problèmes Variationnels dans les Multi-domaines: Modèlisation des Jonctions et Applications, Masson (Paris, 1991).
9.Mishuris, G. S., Movchan, A. B. and Slepyan, L. I., Localised knife waves in a structured interface. J. Mech. Phys. Solids 57(12) 2009, 19581979, doi:10.1016/j.jmps.2009.08.004.
10.Panasenko, G. P., Multi-Scale Modelling for Structures and Composites, Springer (Dordrecht, 2005), doi:10.1007/1-4020-2982-9.
11.Slepyan, L. I., Models and Phenomena in Fracture Mechanics, Springer (Berlin, 2002).
MathJax is a JavaScript display engine for mathematics. For more information see

MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed