Skip to main content Accessibility help

d-sequences, local cohomology modules and generalized analytic independence

  • H. Zakeri (a1)


Throughout this paper A is a commutative noetherian ring (with identity) and M is an A-module. We use to denote, for i ≥ 0, the i-th right derived functor of the local cohomology functor L with respect to an ideal a of A [8; 2.1].



Hide All
1Barshay, J.. Generalized analytic independence. Proc. Amer. Math. Soc., 58 (1976), 3236.
2Goto, S. and Yamagishi, K.. The theory of unconditioned strong d-sequences and modules of finite local cohomology. Preprint.
3Herzog, J., Simis, A. and Vasconcelos, W. V.. Approximation complexes of blowing-up rings II. J. Algebra, 82 (1983), 5383.
4Huneke, C.. The theory of d-sequences and powers of ideals. Advan. in Math, 46 (1982), 249279.
5Northcott, D. G.. Ideal theory (Cambridge University Press, Cambridge, 1953).
6O”Carroll, L.. On the generalized fractions of Sharp and Zakeri. J. London Math. Soc. (2), 28 (1983), 417427.
7Riley, A. M.. Complexes of modules of generalized fractions. Thesis (Univ. of Sheffield, 1983).
8Sharp, R. Y.. Local cohomology theory in commutative algebra. Quart. J. Math. Oxford (2), 21 (1970), 425434.
9Sharp, R. Y. and Zakeri, H.. Modules of generalized fractions. Mathematika, 29 (1982), 3241.
10Sharp, R. Y. and Zakeri, H.. Local cohomology and modules of generalized fractions. Mathematika, 29 (1982), 296306.
11Sharp, R. Y. and Zakeri, H.. Generalized fractions, Buchsbaum modules and generalized Cohen-Macaulay modules. Math. Proc. Camb. Phil. Soc., 98 (1985), 429436.
MathJax is a JavaScript display engine for mathematics. For more information see

MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed