Skip to main content Accessibility help
×
Home

THE DIVISOR FUNCTION IN ARITHMETIC PROGRESSIONS MODULO PRIME POWERS

  • Rizwanur Khan (a1)

Abstract

We study the average value of the divisor function $\unicode[STIX]{x1D70F}(n)$ for $n\leqslant x$ with $n\equiv a~\text{mod}~q$ . The divisor function is known to be evenly distributed over arithmetic progressions for all $q$ that are a little smaller than $x^{2/3}$ . We show how to go past this barrier when $q=p^{k}$ for odd primes $p$ and any fixed integer $k\geqslant 7$ .

Copyright

References

Hide All
1. Banks, W., Heath-Brown, R. and Shparlinski, I., On the average value of divisor sums in arithmetic progressions. Int. Math. Res. Not. IMRN 2005(1) 2005, 125, doi:10.1155/IMRN.2005.1.
2. Barban, M., Linnik, Yu. and Tshudakov, N., On prime numbers in an arithmetic progression with a prime-power difference. Acta Arith. 9 1964, 375390.
3. Blomer, V., The average value of divisor sums in arithmetic progressions. Q. J. Math. 59(3) 2008, 275286.
4. Blomer, V. and Milićević, D., p-adic analytic twists and strong subconvexity. Ann. Sci. Éc. Norm. Supér. (4) 48(3) 2015, 561605.
5. Blomer, V. and Milićević, D., The second moment of twisted modular L-functions. Geom. Funct. Anal. 25(2) 2015, 453516.
6. Davenport, H., Multiplicative Number Theory (Graduate Texts in Mathematics 74 ), 3rd edn. Springer (New York, 2000), revised and with a preface by Hugh L. Montgomery.
7. Fouvry, É., Sur le problème des diviseurs de Titchmarsh. J. reine angew. Math. 357 1985, 5176.
8. Fouvry, É. and Iwaniec, H., The divisor function over arithmetic progressions. Acta Arith. 61(3) 1992, 271287, with an appendix by Nicholas Katz.
9. Fujii, A., Gallagher, P. and Montgomery, H., Some hybrid bounds for character sums and Dirichlet L-series. In Topics in Number Theory (Proceedings of the Colloquiums, Debrecen, 1974) (Colloquia Mathematica Societatis János Bolyai 13 ), North-Holland (Amsterdam, 1974), 4157.
10. Gallagher, P., Primes in progressions to prime-power modulus. Invent. Math. 16 1972, 191201.
11. Heath-Brown, R., Hybrid bounds for Dirichlet L-functions. Invent. Math. 47(2) 1978, 149170.
12. Irving, A., The divisor function in arithmetic progressions to smooth moduli. Int. Math. Res. Not. IMRN 2015(15) 2015, 66756698, doi:10.1093/imrn/rnu149.
13. Iwaniec, H., On zeros of Dirichlet’s L series. Invent. Math. 23 1974, 97104.
14. Iwaniec, H. and Kowalski, E., Analytic Number Theory (American Mathematical Society Colloquium Publications 53 ), American Mathematical Society (Providence, RI, 2004).
15. Koblitz, N., p-adic Numbers, p-adic Analysis, and Zeta-Functions (Graduate Texts in Mathematics 58 ), Springer (New York–Heidelberg, 1977).
16. Milićević, D., Sub-Weyl subconvexity for Dirichlet L-functions to powerful moduli. Compos. Math. 152(4) 2016, 825875.
17. Munshi, R., Bounds for twisted symmetric square L-functions. J. reine angew. Math. 682 2013, 6588.
18. Pongsriiam, P. and Vaughan, R. C., The divisor function on residue classes I. Acta Arith. 168(4) 2015, 369382.
19. Postnikov, A., On the sum of characters with respect to a modulus equal to a power of a prime number. Izv. Ross. Akad. Nauk SSSR Ser. Mat. 19 1955, 1116.
20. Walfisz, A., Zur additiven Zahlentheorie. II. Math. Z. 40(1) 1936, 592607.
21. Young, M., The fourth moment of Dirichlet L-functions. Ann. of Math. (2) 173(1) 2011, 150.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed