Skip to main content Accessibility help
×
Home

CANCELLATIONS BETWEEN KLOOSTERMAN SUMS MODULO A PRIME POWER WITH PRIME ARGUMENTS

  • Kui Liu (a1), Igor E. Shparlinski (a2) and Tianping Zhang (a3)

Abstract

We obtain a non-trivial bound for cancellations between the Kloosterman sums modulo a large prime power with a prime argument running over very short intervals, which in turn is based on a new estimate on bilinear sums of Kloosterman sums. These results are analogues of those obtained by various authors for Kloosterman sums modulo a prime. However, the underlying technique is different and allows us to obtain non-trivial results starting from much shorter ranges.

Copyright

References

Hide All
1. Blomer, V., Fouvry, É., Kowalski, E., Michel, P. and Milićević, D., On moments of twisted L-functions. Amer. J. Math. 139 2017, 707768.
2. Blomer, V., Fouvry, É., Kowalski, E., Michel, P. and Milićević, D., Some applications of smooth bilinear forms with Kloosterman sums. Proc. Steklov Math. Inst. 296 2017, 1829.
3. Blomer, V. and Milićević, D., The second moment of twisted modular L-functions. Geom. Funct. Anal. 25 2015, 453516.
4. Davenport, H., Multiplicative Number Theory, 2nd edn., Springer (New York, 1980).
5. Fouvry, É., Kowalski, E. and Michel, P., Algebraic trace functions over the primes. Duke Math. J. 163 2014, 16831736.
6. Fouvry, É., Michel, P., Rivat, J. and Sárközy, A., On the pseudorandomness of the signs of Kloosterman sums. J. Aust. Math. Soc. 77 2004, 425436.
7. Iwaniec, H. and Kowalski, E., Analytic Number Theory, American Mathematical Society (Providence, RI, 2004).
8. Khan, R., The divisor function in arithmetic progressions modulo prime powers. Mathematika 62 2016, 898908.
9. Koblitz, N., p-adic Numbers, p-adic Analysis, and Zeta-functions (Graduate Texts in Mathematics 58 ), 2nd edn., Springer (New York, 1984).
10. Kowalski, E., Michel, P. and Sawin, W., Bilinear forms with Kloosterman sums and applications. Ann. of Math. (2) 186 2017, 413500.
11. Kowalski, E., Michel, P. and Sawin, W., Bilinear forms with Kloosterman sums, II. Preprint, 2018, arXiv:1802.09849.
12. Kuznetsov, N. V., The Petersson conjecture for cusp forms of weight zero and the Linnik conjecture. Sums of Kloosterman sums. Math. USSR-Sb. 39 1981, 299342.
13. Linnik, Y. V., Additive problems and eigenvalues of the modular operators. In Proc. Internat. Congr. Mathematicians (Stockholm, 1962), Institut Mittag–Leffler (Djursholm, 1963), 270284.
14. Liu, K., Shparlinski, I. E. and Zhang, T. P., Divisor problem in arithmetic progressions modulo a prime power. Adv. Math. 325 2018, 459481.
15. Niederreiter, H., The distribution of values of Kloosterman sums. Arch. Math. 56 1991, 270277.
16. Postnikov, A. G., On the sum of characters with respect to a modulus equal to a power of a prime number. Izv. Akad. Nauk SSSR. Ser. Mat. 19 1955, 1116 (in Russian).
17. Postnikov, A. G., On Dirichlet L-series with the character modulus equal to the power of a prime number. J. Indian Math. Soc. 20 1956, 217226.
18. Sarnak, P. and Tsimerman, J., On Linnik and Selberg’s conjecture about sums of Kloosterman sums. In Algebra, Arithmetic, and Geometry: in Honor of Yu. I. Manin, Vol. II (Progress in Mathematics 270 ), Birkhaüser (Boston, MA, 2009), 619635.
19. Shparlinski, I. E., Distribution of inverses and multiples of small integers and the Sato–Tate conjecture on average. Michigan Math. J. 56 2008, 99111.
20. Shparlinski, I. E., On sums of Kloosterman and Gauss sums. Trans. Amer. Math. Soc. (to appear).
21. Shparlinski, I. E. and Zhang, T. P., Cancellations amongst Kloosterman sums. Acta Arith. 176 2016, 201210.
22. Stepanov, S. A. and Shparlinski, I. E., Estimation of trigonometric sums with rational and algebraic functions (Russian). In Automorphic Functions and Number Theory, Part I, Akad. Nauk SSSR (Dal’nevostochn. Otdel., Vladivostok, 1989), 518.
23. Stepanov, S. A. and Shparlinski, I. E., An estimate for the incomplete sum of multiplicative characters of polynomials (Russian). Diskret. Mat. 2 1990, 115119. Engl. transl., Discrete Math. Appl. 2 (1992), 169–174.
24. Vaughan, R. C., An elementary method in prime number theory. Acta Arith. 37 1980, 111115.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

MSC classification

CANCELLATIONS BETWEEN KLOOSTERMAN SUMS MODULO A PRIME POWER WITH PRIME ARGUMENTS

  • Kui Liu (a1), Igor E. Shparlinski (a2) and Tianping Zhang (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed