Skip to main content Accessibility help

An upper estimate for the lattice point enumerator

  • P. Gritzmann (a1) and J. M. Wills (a1)


Since Minkowski [29] gave his famous lattice point theorem for centrally symmetric convex bodies, a theorem that turned out to be of fundamental importance in number theory, much effort has been made to obtain tight estimates for the number of lattice points of a given lattice in convex bodies in terms of the basic quermass-integrals Wo,…, Wd, whose eminent role shows in Hadwiger's functional theorem [14, 15, 16, see also 17, p. 221–225]. (For the discrete analogues of Wo,…, Wd see [2].) The present paper is concerned with an upper estimate of this kind.



Hide All
1.Betke, U. and Gritzmann, P.. An application of valuation theory to two problems in discrete geometry. Discrete Math., 58 (1986), 8185.
2.Betke, U. and Kneser, M.. Zerlegungen und Bewertungen von Gitterpolytopen. J. reine u. angew. Math., 358 (1985), 202208.
3.Betke, U. and McMullen, P.. Lattice points in lattice polytopes. Monatsh. Math., 99 (1985), 253265.
4.Betke, U. and Wills, J. M.. Stetige und diskrete Funktionale konvexer Körper. In: Contributions to Geometry, ed. by Tölke, J. and Wills, J. M. (Birkhäuser, Basel 1979), 226237.
5.Blichfeldt, H. F.. Notes on geometry of numbers. Bull. Amer. Math. Soc., 27 (1921), 150153.
6.Bokowski, J.. Gitterpunktanzahl und Parallelkörpervolumen von Eikörpern. Monatshefte Math., 79 (1975), 93101.
7.Bokowski, J., Hadwiger, H. and Wills, J. M.. Eine Ungleichung zwischen Volumen, Oberfläche und Gitterpunktanzahl konvexer Körper im n–dimensionalen euklidischen Raum. Math. Z., 127 (1972), 363364.
8.Coxeter, H. S. M.. Regular polytopes (Dover, New York, 1973).
9.Davenport, H.. On a principle of Lipschitz. J. London Math. Soc., 26 (1951), 179183.
10.Fejes, L.Töth. Research problem 13. Periodica Math. Hung., 6 (1975), 197199.
11.Gritzmann, P.. Finite packing of equal balls. J London Math. Soc., (2), 33 (1986), 543553.
12.Gruber, P. M. and Lekkerkerker, C. G.. Geometry of Numbers, 2nd ed. (to appear); 1st ed. Lekkerkerker, C. G. (North-Holland, Amsterdam, 1969).
13.Grünbaum, B.. Convex Polytopes (Interscience, London, 1967).
14.Hadwiger, H.. Einige Anwendungen eines Funktionalsatzes fur konvexe Körper in der Räumlichen Integralgeometrie. Monatschefte Math., 54 (1950), 345353.
15.Hadwiger, H.. Beweis eines Funktionalsatzes für konvexe Körper. Abh. Math. Sem. Univ. Hamburg, 17 (1951), 6976.
16.Hadwiger, H.. Additive Funktionale k-dimensionaler Eichkörper I, II. Arch. Math., 3 (1952), 470478; 4 (1953), 374–379.
17.Hadwiger, H.. Vorlesungen über Inhalt, Oberfläche und hoperimetrie (Springer, Berlin, 1957).
18.Hadwiger, H.. Gitterperiodische Punktmengen und Isoperimetrie. Monatshefte Math., 96 (1972), 410418.
19.Hadwiger, H.. Gitterpunktanzahl im Simplex und Wills'sche Vermutung. Math. Ann., 239 (1979), 271288.
20.Hammer, J.. Unsolved problems concerning lattice points (Pitman, London, 1977).
21.Höhne, R.. Zur Gitterpunktanzahl im Simplex. Math. Ann., 251 (1980), 269276.
22.Kabatjanski, G. A. and Levenstein, V. I.. Bounds for packings on the sphere and in space (Russian), Problemy Peredaci Informaticii, 14 (1978), 325; English transl. in Problems of information transmission, 14 (1978), 1–17.
23.Leech, J.. Notes on sphere packings. Can. J. Math., 19 (1967), 251267.
24.Macdonald, I. G.. The volume of a lattice polyhedron. Proc. Cambridge Phil. Soc, 59 (1963), 719726.
25.Macdonald, I. G.. Polynomials associated with finite cell complexes. J. London Math. Soc. (2), 4 (1971), 181192.
26.Mahler, K.. On lattice points in n-dimensional star bodies I. Existence theorems. Proc Royal Soc London, A, 187 (1946), 151187.
27.McMullen, P.. Non-linear angle-sum relations for polyhedral cones and polytopes. Math. Proc. Camb. Phil. Soc., 78 (1975), 247261.
28.McMullen, P.. Valuations and Euler-type relations on certain classes of convex polytopes. Proc. London Math. Soc., (3), 35 (1977), 113135.
29.Minkowski, H.. Geometrie der Zahlen (Teubner, Leipzig, 1896); (Johnson Reprint Corp., New York, 1968).
30.Oler, N.. An inequality in the geometry of numbers. Ada Math., 105 (1961), 1948.
31.Reeve, J. E.. On the volume of lattice polyhedra. Proc. London Math. Soc., (3), 7 (1957), 378395.
32.Reeve, J. E.. A further note on the volume of lattice polyhedra. J. London Math. Soc., 34 (1959), 5762.
33.Rogers, C. A.. The packing of equal spheres. Proc. London Math. Soc., (3), 8 (1958), 609620.
34.Rogers, C. A.. Packing and Covering (Cambridge University Press, 1964).
35.Schmidt, W. M.. Volume, surface area and the number of integer points covered by a convex set. Arch. Math., 23 (1972), 537543.
36.Wills, J. M.. Zur Gitterpunktanzahl konvexer Mengen. Elem. Math, 28 (1973), 5763.
37.Zassenhaus, H.. Methoden und Probleme der modernen Algebra. (Selbstverlag, Universität Hamburg, 1947).
38.Zassenhaus, H.. Modern developments in the geometry of numbers. Bull. Atner. Math. Soc., 67 (1961), 427439.
MathJax is a JavaScript display engine for mathematics. For more information see


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed