Skip to main content Accessibility help

Three extensional models of type theory



We compare three categorical models of type theory with extensional constructs: setoids over extensional type theory; setoids over intensional type theory and a certain free exact category (the free ‘ΠW-pretopos’). By studying the amount of choice available in these categories, we are able show that they are distinct.



Hide All
van den Berg, B. (2005) Inductive types and exact completion. Ann. Pure Appl. Logic 134 95121.
van den Berg, B. (2006) Predicative topos theory and models for constructive set theory, Ph.D. thesis, University of Utrecht.
van den Berg, B. and Moerdijk, I. (2008) A unified approach to Algebraic Set Theory. To be published in the proceedings of the Logic Colloquium 2006.
Carboni, A. (1995) Some free constructions in realizability and proof theory. J. Pure Appl. Algebra 103 117148.
Carboni, A. and Celia Magno, R. (1982) The free exact category on a left exact one. J. Austral. Math. Soc. A 33 295301.
Dybjer, P. and Setzer, A. (2003) Induction-recursion and initial algebras. Ann. Pure Appl. Logic 124 (1–3)147.
Gambino, N. and Hyland, J. M. E. (2004) Wellfounded trees and dependent polynomial functors. In: Berardi, S., Coppo, M. and Damiani, F. (eds.) Revised Selected Papers: Types for Proofs and Programs, International Workshop, TYPES 2003. Springer-Verlag Lecture Notes in Computer Science 3085 210–225.
Hofmann, M. (1995) On the interpretation of type theory in locally cartesian closed categories. In: Pacholski, L. and Tiuryn, J. (eds.) Selected Papers: Computer science logic, 8th Workshop, CSL '94, Kazimierz, Poland. Springer-Verlag Lecture Notes in Computer Science 933 427–441.
Hofmann, M. (1997) Extensional constructs in intensional type theory, CPHC/BCS distinguished dissertation series, Springer-Verlag.
Hofstra, P. J. W. (2003) Completions in realizability, Ph.D. thesis, University of Utrecht. (Available at
Jacobs, B. P. F. (1999) Categorical logic and type theory. Stud. Logic Foundations Math. 141, North-Holland.
Johnstone, P. T. (2002) Sketches of an elephant: a topos theory compendium. Volume 1. Oxford Logic Guides 43, Oxford University Press.
Lambek, J. (1968) A fixpoint theorem for complete categories. Math. Z. 103 151161.
Mac Lane, S. and Moerdijk, I. (1992) Sheaves in geometry and logic – A first introduction to topos theory, Springer-Verlag.
Martin-Löf, P. (1984) Intuitionistic type theory, Studies in Proof Theory 1, Bibliopolis.
Menni, M. (2000) Exact completions and toposes, Ph.D. thesis, University of Edinburgh. (Available at
Moerdijk, I. and Palmgren, E. (2000) Wellfounded trees in categories. Ann. Pure Appl. Logic 104 (1–3)189218.
Petersson, K. and Synek, D. (1989) A set constructor for inductive sets in Martin-Löf's type theory. In: Pitt, D. H., Rydeheard, D. E., Dybjer, P., Pitts, A. M. and Poigné, A. (eds.) Proceedings of the 1989 Conference of Category Theory and Computer Science, Manchester, U.K. Springer-Verlag Lecture Notes in Computer Science 389.
Seely, R. A. G. (1984) Locally cartesian closed categories and type theory. Math. Proc. Camb. Philos. Soc. 95 (1)3348.
Troelstra, A. S. (1977) A note on non-extensional operations in connection with continuity and recursiveness. Indag. Math. 39 (5) (Nederl. Akad. Wetensch. Proc. Ser. A 80) 455462.
Troelstra, A. S. and van Dalen, D. (1988) Constructivism in mathematics. Volume II. Stud. Logic Foundations Math. 123, North-Holland.
Wraith, G. (1974) Artin glueing. J. Pure Appl. Algebra 4 345348.

Related content

Powered by UNSILO

Three extensional models of type theory



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.