Skip to main content Accessibility help
×
Home

Predicate transformers for extended probability and non-determinism

  • KLAUS KEIMEL (a1) and GORDON D. PLOTKIN (a2)

Abstract

We investigate laws for predicate transformers for the combination of non-deterministic choice and (extended) probabilistic choice, where predicates are taken to be functions to the extended non-negative reals, or to closed intervals of such reals. These predicate transformers correspond to state transformers, which are functions to conical powerdomains, which are the appropriate powerdomains for the combined forms of non-determinism. As with standard powerdomains for non-deterministic choice, these come in three flavours – lower, upper and (order-)convex – so there are also three kinds of predicate transformers. In order to make the connection, the powerdomains are first characterised in terms of relevant classes of functionals.

Much of the development is carried out at an abstract level, a kind of domain-theoretic functional analysis: one considers d-cones, which are dcpos equipped with a module structure over the non-negative extended reals, in place of topological vector spaces. Such a development still needs to be carried out for probabilistic choice per se; it would presumably be necessary to work with a notion of convex space rather than a cone.

Copyright

References

Hide All
Bonnesen, T. and Fenchel, W. (1934) Theorie der konvexen Körper, Ergebnisse der Mathematik und ihrer Grenzgebiete 3, Springer Verlag.
Bonsall, F. F. (1954) Sublinear functionals and ideals in partially ordered vector spaces. Proc. London Math. Soc., Series 3, 4 402418.
Bonsangue, M. M. (1998) Topological Duality in Semantics. Electronic Notes in Theoretical Computer Science 8 1274.
Dijkstra, E. W. (1976) A Discipline of Programming, Prentice-Hall.
Escardó, M. (2004) Synthetic topology of data types and classical spaces. Electronic Notes in Theoretical Computer Science 87 1150.
Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M. and Scott, D. S. (2003) Continuous Lattices and Domains, Encyclopedia of Mathematics and its Applications 93, Cambridge University Press.
Graham, S. (1988) Closure Properties of a Probabilistic Powerdomain Construction. In: Main, M., Melton, A., Mislove, M. and Schmidt, D. (eds.) Mathematical Foundations of Programming Language Semantics. Springer-Verlag Lecture Notes in Computer Science 298 213–233.
Heckmann, R. (1993) Power domains and second-order predicates. Theoretical Computer Science 111 5988.
Heckmann, R. (1994) Probabilistic domains. In: Proc. of CAAP'94. Springer-Verlag Lecture Notes in Computer Science 136 2156.
Hörmander, L. (1955) Sur la fonction d'appui des ensembles convexes dans un espace localement convexe. Ark. Mat. 3 181186.
Huber, P. J. (1981) Robust Statistics, Wiley.
Johnstone, P. T. (1985) Vietoris locales and localic semilattices. In: Hoffmann, R.-E., Hofmann, K. H. (eds.) Continuous Lattices and Their Applications. Lecture Notes in Pure and Applied Mathematics 101 155–180.
Jones, C. (1990) Probabilistic non-determinism, Ph.D. Thesis, University of Edinburgh, Report ECS-LFCS-90-105.
Jones, C. and Plotkin, G. D. (1989) A probabilistic powerdomain of evaluations. In Proc. of LICS'89, IEEE Press 186195.
Jung, A. and Tix, R. (1998) The troublesome probabilistic powerdomain. In: Edalat, A., Jung, A., Keimel, K. and Kwiatkowska, M. (eds.) Proc. of Comprox III. Electronic Notes in Theoretical Computer Science 13 70–91.
Keimel, K. and Gierz, G. (1982) Halbstetige Funktionen und stetige Verbände. In: Hoffmann, R.-E. (ed.) Continuous Lattices and Related Topics, Mathematik Arbeitspapiere Nr. 27, Universität Bremen 5967.
Kirch, O. (1993) Bereiche und Bewertungen. Master's thesis, Technische Hochschule Darmstadt. (Available at www.mathematik.tu-darmstadt.de:8080/ags/ag14/papers/kirch/.)
Kutateladze, S. S. and Rubinov, A. M. (1972) Minkowski duality and its applications. Russian Mathematical Surveys 27 (3)137191.
Maaβ, S. (2002) Exact functionals and their core. Statistical Papers 43 (1)7593.
McIver, A. and Morgan, C. (2001a) Demonic, angelic and unbounded probabilistic choices in sequential programs. Acta Informatica 37 329354.
McIver, A. and Morgan, C. (2001b) Partial correctness for probabilistic demonic programs. Theoretical Computer Science 266 513541.
McIver, A. and Morgan, C. (2005) Abstraction, Refinement and Proof for Probabilistic Systems, Monographs in Computer Science, Springer Verlag.
McIver, A., Morgan, C. and Seidel, K. (1996) Probabilistic predicate transformers. ACM Transactions on Programming Languages and Systems 18 325353.
Minkowski, H. (1903) Volumen und Oberfläche. Mathematische Annalen 57 447495.
Plotkin, G. D. (1980) Dijkstra's predicate transformers and Smyth's power domains. In: Bjorner, D. (ed.) Abstract Software Specifications. Springer-Verlag Lecture Notes in Computer Science 86 527–553.
Plotkin, G. D. (2006) A Domain-Theoretic Banach–Alaoglu Theorem. Mathematical Structures in Computer Science 16 299312.
Rockafellar, R. T. (1972) Convex Analysis, Princeton University Press.
Smyth, M. B. (1983) Power domains and predicate transformers: a topological view. In: Díaz, J. (ed.) Proc. of 10th ICALP. Springer-Verlag Lecture Notes in Computer Science 154 662–675.
Tix, R. (1995) Stetige Bewertungen auf topologischen Räumen. Master's thesis, Technische Hochschule Darmstadt. (Available at www.mathematik.tu-darmstadt.de:8080/ags/ag14/papers/tix/.)
Tix, R., Keimel, K. and Plotkin, G. D. (2008) Semantic Domains for Combining Probability and Non-Determinism. Electronic Notes in Theoretical Computer Science 222 1104.
Tolstogonov, A. A. (1976) Support functions of convex compacta (in Russian). Matematicheskie Zametki 22 203213. (English translation in: Mathematical Notes 22 604–612.)
Walley, P. (1991) Statistical Inference with Imprecise Probabilities, Chapman and Hall.
Ying, M. (2003) Reasoning about probabilistic sequential programs in a probabilistic logic. Acta Informatica 39 315389.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed