Skip to main content Accessibility help
×
Home

Implicative algebras: a new foundation for realizability and forcing

  • Alexandre Miquel (a1)

Abstract

We introduce the notion of implicative algebra, a simple algebraic structure intended to factorize the model-theoretic constructions underlying forcing and realizability (both in intuitionistic and classical logic). The salient feature of this structure is that its elements can be seen both as truth values and as (generalized) realizers, thus blurring the frontier between proofs and types. We show that each implicative algebra induces a (Set-based) tripos, using a construction that is reminiscent from the construction of a realizability tripos from a partial combinatory algebra. Relating this construction with the corresponding constructions in forcing and realizability, we conclude that the class of implicative triposes encompasses all forcing triposes (both intuitionistic and classical), all classical realizability triposes (in the sense of Krivine), and all intuitionistic realizability triposes built from partial combinatory algebras.

Copyright

Corresponding author

*Corresponding author. Email: amiquel@fing.edu.uy

Footnotes

Hide All

This work was partly supported by the Uruguayan National Research & Innovation Agency (ANII) under the project “Realizability, Forcing and Quantum Computing,” FCE_1_2014_1_104800.

Footnotes

References

Hide All
Barendregt, H. (1984). The Lambda Calculus: Its Syntax and Semantics, Studies in Logic and The Foundations of Mathematics, vol. 103, North-Holland, Elsevier.
Barendregt, H., Coppo, M. and Dezani-Ciancaglini, M. (1983). A filter lambda model and the completeness of type assignment. Journal of Symbolic Logic 48 (4) 931940.
Cohen, P. J. (1963). The independence of the continuum hypothesis. Proceedings of the National Academy of Sciences of the United States of America 50 (6) 11431148.
Cohen, P. J. (1964). The independence of the continuum hypothesis II. Proceedings of the National Academy of Sciences of the United States of America 51 (1) 105110.
Coppo, M., Dezani-Ciancaglini, M. and Venneri, B. (1980). Principal type schemes and lambda-calculus semantics. In: Hindley, R. and Seldin, G. (eds.) To H. B. Curry. Essays on Combinatory Logic, Lambda-Calculus and Formalism, London, Academic Press, 480490.
Ferrer, W. and Malherbe, O. (2017). The category of implicative algebras and realizability. ArXiv e-prints.
Ferrer Santos, W., Frey, J., Guillermo, M., Malherbe, O. and Miquel, A. (2017). Ordered combinatory algebras and realizability. Mathematical Structures in Computer Science 27 (3) 428458.
Friedman, H. (1973). Some applications of Kleene's methods for intuitionistic systems. In: Mathias, A. R. D. and Rogers, H. (eds.), Cambridge Summer School in Mathematical Logic, Lecture Notes in Mathematics, vol. 337, Berlin-Heidelberg-New York, Springer-Verlag, 113170.
Girard, J. (1987). Linear logic. Theoretical Computer Science 50, 1102.
Girard, J.-Y. (1972). Interprétation fonctionnelle et élimination des coupures de l'arithmétique d'ordre supérieur. Doctorat d'État, Université Paris VII.
Girard, J.-Y., Lafont, Y. and Taylor, P. (1989). Proofs and Types. Cambridge, Cambridge University Press.
Griffin, T. (1990). A formulae-as-types notion of control. In: Principles of Programming Languages (POPL'90), 4758.
Guillermo, M. and Miquel, A. (2015). Specifying Peirce's law. Mathematical Structures in Computer Science 26 (7) 12691303.
Hyland, J. M. E., Johnstone, P. T. and Pitts, A. M. (1980). Tripos theory. Mathematical Proceedings of the Cambridge Philosophical Society 88 205232.
Jech, T. (2002). Set Theory, Third Millennium Edition (Revised and Expanded). Berlin-Heidelberg-New York, Springer.
Kleene, S. C. (1945). On the interpretation of intuitionistic number theory. Journal of Symbolic Logic 10 109124.
Koppelberg, S. (1989). Handbook of Boolean Algebras, vol. 1, North-Holland.
Krivine, J. L. (1993). Lambda-Calculus, Types and Models. Ellis Horwood. Out of print, now available at the author's web page at: https://www.irif.univ-paris-diderot.fr/krivine/articles/Lambda.pdf.
Krivine, J.-L. (2001). Typed lambda-calculus in classical Zermelo-Fraenkel set theory. Archive for Mathematical Logic 40 (3) 189205.
Krivine, J.-L. (2003). Dependent choice, ‘quote' and the clock. Theoretical Computer Science 308 (1–3) 259276.
Krivine, J.-L. (2009). Realizability in classical logic. In: Interactive Models of Computation and Program Behaviour, Panoramas et synthèses, vol. 27, Société Mathématique de France, 197229.
Krivine, J.-L. (2011). Realizability algebras: a program to well order R. Logical Methods in Computer Science 7 147.
Krivine, J.-L. (2012). Realizability algebras II: new models of ZF + DC. Logical Methods for Computer Science 8 (1:10) 128.
Leivant, D. (1983). Polymorphic type inference. In: Proceedings of the 10th ACM Symposium on Principles of Programming Languages, 8898.
McCarty, D. (1984). Realizability and Recursive Mathematics. Phd thesis, Oxford University.
Miquel, A. (2000). A model for impredicative type systems, universes, intersection types and subtyping. In: LICS, 1829.
Miquel, A. (2011). Existential witness extraction in classical realizability and via a negative translation. Logical Methods for Computer Science 7 (2) 147.
Miquel, A. (2011). Forcing as a program transformation. In: LICS, IEEE Computer Society, 197206.
Myhill, J. (1973). Some properties of intuitionistic Zermelo-Fraenkel set theory. Lecture Notes in Mathematics 337 206231.
Parigot, M. (1997). Proofs of strong normalisation for second order classical natural deduction. Journal of Symbolic Logic 62 (4) 14611479.
Pitts, A. M. (1981). The Theory of Triposes. Phd thesis, University of Cambridge.
Pitts, A. M. (2002). Tripos theory in retrospect. Mathematical Structures in Computer Science 12 (3) 265279.
Ronchi della Rocca, S. and Venneri, B. (1984). Principal type schemes for an extended type theory. Theoretical Computer Science 28 151169.
Ruyer, F. (2006). Preuves, types et sous-types. Thèse de doctorat, Université Savoie Mont Blanc.
Streicher, T. (2013). Krivine's classical realisability from a categorical perspective. Mathematical Structures in Computer Science 23 (6) 12341256.
Tait, W. (1967). Intensional interpretation of functionals of finite type I. Journal of Symbolic Logic 32 (2), 198212.
van Bakel, S., Liquori, L., Ronchi della Rocca, S. and Urzyczyn, P. (1994). Comparing cubes. In: Nerode, A. and Matiyasevich, Y. V. (eds.), Proceedings of LFCS'94. Third International Symposium on Logical Foundations of Computer Science, Lecture Notes in Computer Science, vol. 813, Springer-Verlag, 353365.
van Oosten, J. (2002). Realizability: a historical essay. Mathematical Structures in Computer Science 12 (3) 239263.
van Oosten, J. (2008). Realizability, an Introduction to its Categorical Side. Amsterdam, Elsevier.
Werner, B. (1994). Une théorie des Constructions Inductives. Phd thesis, Université Paris VII.

Keywords

Implicative algebras: a new foundation for realizability and forcing

  • Alexandre Miquel (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.