Skip to main content Accessibility help
×
Home

Generalised multisets for chemical programming

  • J.-P. BANÂTRE (a1), P. FRADET (a2) and Y. RADENAC (a1)

Abstract

Gamma is a programming model in which computation can be seen as chemical reactions between data represented as molecules floating in a chemical solution. This model can be formalised as associative, commutative, conditional rewritings of multisets where rewrite rules and multisets represent chemical reactions and solutions, respectively. In this article we generalise the notion of multiset used by Gamma and present applications through various programming examples. First, multisets are generalised to include rewrite rules, which become first-class citizens. This extension is formalised by the $\gamma$-calculus, which is a chemical model that summarises in a few rules the essence of higher-order chemical programming. By extending the $\gamma$-calculus with constants, operators, types and expressive patterns, we build a higher-order chemical programming language called HOCL. Finally, multisets are further generalised by allowing elements to have infinite and negative multiplicities. Semantics, implementation and applications of this extension are considered.

Copyright

Related content

Powered by UNSILO

Generalised multisets for chemical programming

  • J.-P. BANÂTRE (a1), P. FRADET (a2) and Y. RADENAC (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.