Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-vkn6t Total loading time: 0.229 Render date: 2022-08-07T23:21:49.389Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Intuitionistic model constructions and normalization proofs

Published online by Cambridge University Press:  01 February 1997

THIERRY COQUAND
Affiliation:
Department of Computing Science, Chalmers University of Technology and University of Göteborg, Göteborg, Sweden
PETER DYBJER
Affiliation:
Department of Computing Science, Chalmers University of Technology and University of Göteborg, Göteborg, Sweden

Abstract

The traditional notions of strong and weak normalization refer to properties of a binary reduction relation. In this paper we explore an alternative approach to normalization, in which we bypass the reduction relation and instead focus on the normalization function, that is, the function that maps a term to its normal form. We work in an intuitionistic metalanguage, and characterize a normalization function as an algorithm that picks a canonical representative from the equivalence class of convertible terms. This means that we also get a decision algorithm for convertibility. Such a normalization function can be constructed by building an appropriate model and a function quote, which inverts the interpretation function. The normalization function is then obtained by composing the quote function with the interpretation function. We also discuss how to get a simple proof of the property that constructors are one-to-one, which is usually obtained as a corollary of Church–Rosser and normalization in the traditional sense. We illustrate this approach by showing how a glueing model (closely related to the glueing construction used in category theory) gives rise to a normalization algorithm for a combinatory formulation of Gödel System T. We then show how the method extends in a straightforward way when we add cartesian products and disjoint unions (full intuitionistic propositional logic under a Curry–Howard interpretation) and transfinite inductive types such as the Brouwer ordinals.

Type
Research Article
Copyright
© 1997 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
36
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Intuitionistic model constructions and normalization proofs
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Intuitionistic model constructions and normalization proofs
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Intuitionistic model constructions and normalization proofs
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *