[1]Aronszajn, N.On a problem of Weyl in the theory of singular Sturm–Liouville equations. Amer. J. Math. (3) 79 (1957), 597–610.

[2]Behncke, H.Absolute continuity of Hamiltonians with von Neumann Wigner potentials I. Proc. Amer. Math. Soc. 111 (1991), 373–384.

[3]Behncke, H.Absolute continuity of Hamiltonians with von Neumann Wigner potentials II. Manuscripta Math. (1) 71 (1991), 163–181.

[4]Behncke, H.The m-function for Hamiltonians with Wigner–von Neumann potentials. J. Math. Phys. (4) 35 (1994), 1445–1462.

[5]Benzaid, Z. and Lutz, D. A.Asymptotic representation of solutions of perturbed systems of linear difference equations. Stud. Appl. Math. (3) 77 (1987), 195–221.

[6]Brown, B. M., Eastham, M. S. P. and McCormack, D. K. R.Absolute continuity and spectral concentration for slowly decaying potentials. J. Comput. Appl. Math. 94 (1998), 181–197. arXiv:math/9805025v1.

[7]Buslaev, V. S. and Matveev, V. B.Wave operators for the Schrödinger equation with a slowly decreasing potential. Theoret. Math. Phys. (3) 2 (1970), 266–274.

[8]Buslaev, V. S. and Skriganov, M. M.Coordinate asymptotic behavior of the solution of the scattering problem for the Schrödinger equation. Theoret. Math. Phys. (2) 19 (1974), 465–476.

[9]Capasso, F., Sirtori, C., Faist, J., Sivco, D. L., Chu, S. N. G. and Cho, A. Y.Observation of an electronic bound state above a potential well. Nature 358 (1992), 565–567.

[10]Cruz–Sampedro, J., Herbst, I. and Martinez-Avendano, R.Perturbations of the Wigner-von Neumann potential leaving the embedded eigenvalue fixed. Ann. Henri Poincaré, (2) 3 (2002), 331–345.

[11]Damanik, D. and Simon, B.Jost functions and Jost solutions for Jacobi matrices, I. A necessary and sufficient condition for Szegő asymptotics. Invent. Math. (1) 165 (2006), 1–50. arXiv:math/0502486v1.

[12]Deift, P. and Killip, R.On the Absolutely Continuous Spectrum of One-Dimensional Schrödinger Operators with Square Summable Potentials. Comm. Math. Phys. (2) 203 (1999), 341–347.

[13]Gilbert, D. J. and Pearson, D. B.On subordinacy and analysis of the spectrum of one-dimensional Schrödinger operators. J. Math. Anal. Appl. (1) 128 (1987), 30–56.

[14]Harris, W. A. and Lutz, D. AAsymptotic integration of adiabatic oscillators. J. Math. Anal. Appl. 51 (1975), 76–93.

[15]Hinton, D. B., Klaus, M. and Shaw, J. K.Embedded half-bound states for potentials of Wigner-von Neumann type. Proc. Lond. Math. Soc. (3) 3 (1991), 607–646.

[16]Janas, J. and Simonov, S.Weyl–Titchmarsh type formula for discrete Schrödinger operator with Wigner–von Neumann potential. Studia Math. (2) 201 (2010), 167–189. arXiv:1003.3319, mp_arc 10-47.

[17]Kiselev, A.Absolutely continuous spectrum of one-dimensional Schrödinger operators and Jacobi matrices with slowly decreasing potentials. Comm. Math. Phys. (2) 179 (1996), 377–399.

[18]Klaus, M.Asymptotic behavior of Jost functions near resonance points for Wigner-von Neumann type potentials. J. Math. Phys. 32 (1991), 163–174.

[19]Kodaira, K.The eigenvalue problem for ordinary differential equations of the second order and Heisenberg's theory of *S*-matrices. Amer. J. Math. (4) 71 (1949), 921–945.

[20]Kurasov, P.Zero-range potentials with internal structures and the inverse scattering problem. Lett. Math. Phys. (4) 25 (1992), 287–297.

[21]Kurasov, P.Scattering matrices with finite phase shift and the inverse scattering problem. Inverse Problems (3) 12 (1996), 295–307.

[22]Kurasov, P. and Naboko, S.Wigner–von Neumann perturbations of a periodic potential: spectral singularities in bands. Math. Proc. Camb. Phil. Soc. (1) 142 (2007), 161–183.

[23]Kurasov, P. and Simonov, S.Weyl–Titchmarsh type formula for periodic Schrödinger operator with Wigner–von Neumann potential. Preprints in Mathematical Sciences, Lund University 6 (2010), 1–26.

[24]Matveev, V. B.Wave operators and positive eigenvalues for a Schrödinger equation with oscillating potential. Theoret. Math. Phys. (3) 15 (1973), 574–583.

[25]Naboko, S. N.Dense point spectra of Schrödinger and Dirac operators. Theoret. Math. Phys. (1) 68 (1986), 646–653.

[26]Nesterov, P. N.Averaging method in the asymptotic integration problem for systems with oscillatory-decreasing coefficients. Differ. Equ. (6) 43 (2007), 745–756.

[27]Simon, B.Some Schrödinger operators with dense point spectrum. Proc. Amer. Math. Soc. (1) 125 (1997), 203–208.

[28]Stone, M. H.Linear Transformations in Hilbert Space (American Mathematical Society, 1932).

[29]Titchmarsh, E. C.Eigenfunction Expansions Associated with Second-Order Differential Equations. Part I (Clarendon Press, 1946).

[30]Titchmarsh, E. C.Eigenfunction Expansions Associated with Second-Order Differential Equations. Part II (Clarendon Press, 1946).

[31]von Neumann, J. and Wigner, E. P.Über merkwürdige diskrete Eigenwerte. Z. Phys. 30 (1929), 465–467.