Skip to main content Accessibility help
×
Home

Variation of Tamagawa numbers of semistable abelian varieties in field extensions

  • L. ALEXANDER BETTS (a1), VLADIMIR DOKCHITSER (a1), V. DOKCHITSER (a1) and A. MORGAN (a1)

Abstract

We investigate the behaviour of Tamagawa numbers of semistable principally polarised abelian varieties in extensions of local fields. In particular, we give a simple formula for the change of Tamagawa numbers in totally ramified extensions and one that computes Tamagawa numbers up to rational squares in general extensions. As an application, we extend some of the existing results on the p-parity conjecture for Selmer groups of abelian varieties by allowing more general local behaviour. We also give a complete classification of the behaviour of Tamagawa numbers for semistable 2-dimensional principally polarised abelian varieties that is similar to the well-known one for elliptic curves. The appendix explains how to use this classification for Jacobians of genus 2 hyperelliptic curves given by equations of the form y2 = f(x), under some simplifying hypotheses.

Copyright

Footnotes

Hide All
*

Appendix by V. Dokchitser and A. Morgan

Footnotes

References

Hide All
[1] Bhargava, M., Gross, B. H. and Wang, X.. Pencils of quadrics and the arithmetic of hyperelliptic curves. J. Amer. Math. Soc. 30 (2017), 451493.10.1090/jams/863
[2] Coates, J., Fukaya, T., Kato, K. and Sujatha, R.. Root numbers, Selmer groups and non-commutative Iwasawa theory. J. Algebr. Geom. 19, no. 1, (2010), 1997.10.1090/S1056-3911-09-00504-9
[3] Dokchitser, T. and Dokchitser, V.. Regulator constants and the parity conjecture. Invent. Math. 178, no. 1 (2009), 2373.10.1007/s00222-009-0193-7
[4] Dokchitser, T. and Dokchitser, V.. Root numbers and parity of ranks of elliptic curves. J. Reine Angew. Math. 658 (2011), 3964.
[5] Dokchitser, T. and Dokchitser, V.. Growth of III in towers for isogenous curves. Compositio Math. 151 (2015), 19812005.10.1112/S0010437X15007423
[6] Dokchitser, T., Dokchitser, V., Maistret, C. and Morgan, A.. Arithmetic of hyperelliptic curves over local fields, preprint (2017).
[7] Grothendieck, A.. Modèles de Néron et monodromie, LNM 288, Séminaire de Géométrie 7, Exposé IX (Springer-Verlag, 1973).
[8] Halle, L. H. and Nicaise, J.. The Néron component series of an abelian variety. Math. Ann. 348, no. 3 (2010) 749778.10.1007/s00208-010-0495-5
[9] Lorenzini, D.. On the group of components of a Néron model. J. Reine Angew. Math. 445 (1993), 109160.
[10] Morgan, A.. Parity of 2-Selmer ranks of hyperelliptic curves over quadratic extensions, arxiv: 1504.01960.
[11] Namikawa, Y. and Ueno, K.. The complete classification of fibres in pencils of curves of genus two. Manuscripta Math. 9 (1973), 143186.10.1007/BF01297652
[12] Nekovář, J.. On the parity of ranks of Selmer groups IV. Compositio Math. 145 (2009), 13511359.10.1112/S0010437X09003959
[13] Raynaud, M.. Variétés abéliennes et géométrie rigide, Actes du congrès international de Nice 1970, tome 1, 473–477.
[14] Rohrlich, D.. The vanishing of certain Rankin–Selberg convolutions. In: Automorphic Forms and Analytic Number Theory, 123–133. Les publications CRM, Montreal (1990).
[15] Rohrlich, D.. Galois theory, elliptic curves and root numbers. Compositio Math. 100 (1996) 311349.
[16] Samuel, P.. Algebraic Theory of Numbers (Silberger translation) (Kershaw 1971).

Variation of Tamagawa numbers of semistable abelian varieties in field extensions

  • L. ALEXANDER BETTS (a1), VLADIMIR DOKCHITSER (a1), V. DOKCHITSER (a1) and A. MORGAN (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed