[1]
Abramovich, D., Chen, Q., Gillam, D., Huang, Y., Olsson, M., Satriano, M., and Sun, S.. Logarithmic geometry and moduli. arXiv:1006.5870. (2010).
[2]
Chu, C., Lorscheid, O. and Santhanam, R.. Sheaves and K-theory for -schemes. Adv. Math. 229, (2012), p. 2239–2286. [3]
Connes, A.. and Consani, C.. Geometry of the arithmetic site. Adv. Math. 291, (2016), p. 274–329.
[4]
Connes, A.. and Consani, C.. Schemes over and zeta functions. Compositio Mathematica 146.6, (2010), p. 1383–1415. [5]
Cortinas, G., Haesemeyer, C., Walker, M. E. and Weibel, C.. Toric variaties, monoid schemes and cdh descent. J. für die Reine u Angewan. Math. 698 (2015), p. 1–54.
[6]
Deitmar, A.. Schemes over . In: Number fields and function field. Two parallel worlds. Ed. by van der Geer, G., Moonen, B., Schoof, R.. Progr. in Math. (2005), 236. [7]
Gabriel, P.. Des catégories abéliennes. Bull. Soc. Math. France 90 (1962), p. 323–448.
[8]
Garkusha, G. and Prest, M.. Reconstructing projective schemes from Serre subcategories. J. Algebra 319 no. 3 (2008), p. 1132–1153.
[9]
Gilmer, R.. Commutative Semigroup Rings. (The University of Chicago Press 1984).
[10]
Kato, K.. Toric singularities. Ameri. J. Math. 11 6. (1994), p. 1073–1099.
[11]
Kato, K.. Logarithmic structures of Fontaine-Illusie, in Algebraic Analysis, Geometry, and Number Theory. Proceedings of the JAMI Inaugural Conference. Supplement to Amer. J. Math., (1989), p. 191–224.
[12]
Mac Lane, S. and Moerdijk, I.. Sheaves in Geometry and Logic. A First Introduction to Topos Theory. Corrected reprint of the 1992 edition. Universitext. (Springer-Verlag, New York, 1994).
[13]
Moerdijk, I.. Classifying Spaces and Classifying Topoi. Lecture Notes in Mathe. vol. 1616, Springer-Verlag, Berlin, (1995).
[14]
Pin, J.E.. Tropical semirings. Idempotency (Bristol, 1994) Publ. Newton Inst., 11, (Cambridge University Press, Cambridge, 1998), p. 50–59.
[15]
Pirashvili, I.. On the spectrum of monoids and semilattices. J. Pure Appl. Algebra 217 (2013), p. 901–906.
[16]
Pirashvili, I.. On cohomology and vector bundles over monoid schemes. J. Algebra 435 (2015), p. 33–51.
[17]
Rosenberg, A. L.. The spectrum of abelian categories and reconstruction of schemes. Rings, Hopf algebras and Brauer groups (Antwerp/Brussels 1996) Lecture Notes in Pure and Appl. Math. 197 (1998), p. 257–274.