[1]Bak, A.. The computation of surgery groups of finite groups with abelian 2-hyperelementary subgroups. In Algebraic K-Theory, Evanston 1976. Lecture Notes in Math. vol. 551 (Springer-Verlag, 1976), pp. 394–409.

[2]Bass, H.. Algebraic K-Theory (Benjamin, 1968).

[3]Bourbaki, N.. General Topology (Springer-Verlag, 1989).

[4]Cappell, S. and Shaneson, J.. Pseudo-free actions, I. In Algebraic Topology, Aarhus 1978. Lecture Notes in Math. vol. 763 (Springer-Verlag, 1979), pp. 395–447.

[5]Edmonds, A. Equivariant regular neighborhoods. In Proceedings of Conference on Transformation Groups. London Math. Soc. Lecture Note Ser. no. 26 (Cambridge University Press, 1977), pp. 341–368.

[6]Edwards, D. A. and Hastings, H. M.. Čech and Steenrod Homotopy Theories and Applications to Geometric Topology. Lecture Notes in Math. vol. 542 (Springer-Verlag, 1976).

[7]Farrell, F. T. and Wagoner, J.. Infinite matrices in algebraic *K*-theory and topology. Comment. Math. Helv. 47 (1972), 474–501.

[8]Farrell, F. T. and Wagoner, J.. Algebraic torsion for infinite simple homotopy types. Comment. Math. Helv. 47 (1972), 502–513.

[9]Fareell, F. T., Taylor, L. and Wagoner, J.. The Whitehead Theorem in the proper category. Compositio Math. 47 (1973), 1–23.

[10]Hasse, H.. Über die Klassenzahl Abelscher Zahlkörper. Math. Monographien. (Akademie-Verlag, 1952).

[11]Kervaire, M. and Murthy, M. P.. On the projective class group of cyclic groups of prime power order. Comment. Math. Helv. 52 (1977), 415–452.

[12]Kwasik, S.. On periodicity in topological surgery. Canad. J. Math. 38 (1986), 1053–1064.

[13]Kwasik, S. and Schultz, R.. Desuspension of group actions and the ribbon theorem. Topology 27 (1988), 444–457.

[14]Kwasik, S. and Schultz, R.. Homological properties of periodic homeomorphistns of 4-manifolds. Duke Math. J. 58 (1989), 241–250.

[15]Kwasik, S. and Schultz, R.. Pseudofree Group Actions on *S* ^{4}. Amer. J. Math. 112 (1990), 47–70.

[16]Kwasik, S. and Schultz, R.. Isolated singularities of group actions on 4-manifolds. (Preprint, Purdue University and Tulane University, 1989.)

[17]Maumary, S.. Proper surgery groups for non-compact manifolds of finite dimension. (Multicopied notes, University of California at Berkeley, 1972.)

[18]Maumary, S.. Proper surgery groups and Wall-Novikov groups. In Proceedings Battelle Seattle Conf. on Algebraic K-Theory. Lecture Notes in Math. vol. 343 (Springer-Verlag, 1973), pp. 526–539.

[19]Oliver, R., Class groups of cyclic *p*-groups. Mathematika 30 (1983), 26–57.

[20]Oliver, R. and Taylor, L.. Logarithmic Descriptions of Whitehead Groups and Class Groups for p-Groups. Memoirs Amer. Math. Soc. vol. 36 no. 392 (American Mathematical Society, 1988).

[21]Pedersen, E. K. and Ranicki, A.. Projective surgery theory. Topology 19 (1980), 239–254.

[22]Siebenmann, L.. The obstruction to finding a boundary for an open manifold of dimension greater than five. Ph.D. thesis, Princeton University (1965).

[23]Siebenmann, L.. Infinite simple homotopy types. Indag. Math. 32 (1970), 479–495.

[24]Taylor, L.. Surgery on paracompact manifolds. Ph.D. thesis, University of California at Berkeley (1972).

[25]Wall, C. T. C.. Finiteness conditions for *CW*-complexes. Ann. of Math. 81 (1965), 56–69.

[26]Wall, C. T. C.. Poincaré complexes I. Ann. of Math. 86 (1967), 213–245.

[27]Wall, C. T. C.. Surgery on Compact Manifolds. London Math. Soc. Monographs no. 1 (Academic Press, 1970).

[28]Wall, C. T. C.. Classification of Hermitian forms: *VI*-Group rings. Ann. of Math. 103 (1976), 1–80.